

S.NO.	CONTENT	PAGE NO.
1	Pre-emptive breeding strategy to introgress Triticum timopheevi- derived gene Pm6 to checkmate emerging wheat disease of powdery mildew(PM) caused by Blumeria graminis f. sp. tritici (DC) Speer (Syn. Erysiphe graminis DC f. sp. tritici)	$2-11$
2	Development of innovative methods for urediospore conidiogenesis from aecia of Puccina spp from Barberry habituated in Nilgiri Hills	$12-13$

Editorial Board

Dr. M. Sivasamy, Principal Scientist \& Head : Nodal Officer
Dr. V. K. Vikas, Scientist
Dr. P.Jayaprakash, Pr.Sci
Dr. C. Uma Maheswari, Pr.Sci
Dr. P. Nallathambi, Pr.Sci
Dr. Jagdish Kumar
: Editor
: Co-editor
: Member
: Member
: Founder

Pre-emptive breeding strategy to introgress Triticum timopheevi- derived gene Pm6 to checkmate emerging wheat disease of powdery mildew $(\mathbf{P M})$ caused by Blumeria graminis f. sp. tritici (DC) Speer (Syn. Erysiphe graminis DC f. sp. tritici)

Sivasamy. ${ }^{1}$, Vinod ${ }^{2}$, S.M.S.Tomar ${ }^{2}$, Jagdish Kumar ${ }^{3}$, Vikas.V.K ${ }^{1}$, P.Jayaprakash ${ }^{1}$, G.P.Singh ${ }^{4}$, R.Nisha ${ }^{1}$, P.Sajitha ${ }^{1}$, S.Bojan ${ }^{1}$, K.Sivan ${ }^{1}$ and C. Arun ${ }^{1}$

${ }^{1}$ ICAR-Indian Agricultural Research Institute, Regional Station, Wellington- 643231
${ }^{2}$ ICAR-Indian Agricultural Research Institute, New Delhi-110 012
${ }^{3}$ ICAR-National Research Institute for Biotic Stress Management, Raipur, Chatishgarh
${ }^{4}$ ICAR-Indian Institute of Wheat and Barley Research Institute, Karnal

Introduction:

In India and other parts of the world wheat suffers from many major foliar diseases viz., rusts, blight, leaf spots, tan spots and other diseases like powdery mildew etc. Due to release of rust resistant wheat cultivars and adaptation of agro techniques like cultivation of wheat varieties under irrigated environment with closer spacing, increased use of nitrogenous fertilizer in intensive cultivation, modern wheat varieties are getting enhanced susceptibility to even minor diseases like powdery mildew etc. Further, under the changing climatic conditions the powdery mildew caused by Erysiphe graminis f. sp. tritici of wheat once considered as minor disease is assuming as major disease in recent times. Controversial and different opinions prevail upon the factors related to the powdery mildew development in nature. Mehta (1930), stated that cool moist weather favours powdery mildew of wheat. However there is contradictory opinion held by Butler
(1925) that dry and warm summers favour the spread of mildew in U.K. The powdery mildew conidia are known to germinate at 0 - 100 percent relative humidly.

In India, powdery mildew (PM) incidence is mainly confined to the Northern and Southern hills. However it appears sporadically in the plains and foothills of North India. In the recent times PM disease has been observed in severe form in wheat cultivating areas under North Western Plain zone covering Uttarakhand, U.P., Punjab, Haryana, Rajasthan and Delhi (IIWBR report from 2006-2017). Everts and Leath (1992) reported that powdery mildew causes yield losses as high as 48% through premature dying of the leaves, reduction in tiller survival, kernels per head, and kernel size under disease severity. However In India, the accurate data regarding the losses caused by PM are not available, may be due to non availability of wheat varieties which are susceptible only to PM.

Occurrence of powdery mildew on early seedling stage, on leaf and on ear head of wheat at Wellington

The effective way to control the PM is the breeding resistant wheat varieties with race-specific host resistance which is the most consistent, environmentally friendly and economical method than the chemical control (Leath and Bowen 1989; Hardwick et al. 1994). Currently, 57 powdery mildew resistance (Pm) genes at 40 loci have been formally designated (Huang and Roder 2004; McIntosh et al. 2008). Although this task of breeding for PM resistance is complicated by the existence of many physiological races in the fungus, there are many race specific genes conferring various levels of resistance to PM

Back ground information on Powdery mildew resistance genes:

At least 57 resistance loci have been identified for powdery mildew (McIntosh et al. 2008). However, only a few genes have been used in the breeding programmes in various countries for developing powdery mildew resistant varieties. In India, genes Pm3c, Pm5 and Pm8 in combination with
some unidentified genes have been used. Attila, Veery, Kavkaz, Bob White lines with 1BL/1RS translocation carrying Yr9/Lr26/Sr31/Pm8 gene complex provided high level of resistance against the Indian populations of E. graminis tritici This helped in preventing the yield losses not only against powdery mildew but also against leaf, stripe and yellow rust. However, Robert et al. (2011) reported that the effectiveness of Pm8 under spring wheat is suppressed by the Pm3 locus. Additionally, the resistance of cultivars viz. PBW 343, UP 2338, HS 240, WH 542, PBW 502 etc., carrying linked genes Sr31/Lr26/Yr9/Pm8 occupying most of the wheat growing areas in India, succumbed to the emergence of new pathotypes with matching virulence's. Subsequently, The prevalence and severity of PM disease has increased tremendously in the recent years (IIWBR reports from 2006-2017). In this context, identification of new and diverse sources of resistance and their characterization against the prevalent virulences have become imperative and a
pre - requisite for developing new resistant wheat cultivars. Pyramiding multiple diverse resistance genes into otherwise desirable genetic background is an effective strategy to increase the durability and stability resistance. However, detection and screening of several genes for resistance in the same population simultaneously is hardly possible in practice by the conventional methods. A number of powdery mildew resistance genes have been tagged by molecular markers, some of which remained valid after resistance was transferred to different genetic backgrounds and were successfully exploited in wheat breeding programmes. Among the various resistance sources tested for their effectiveness against E. graminis tritici by various workers in India, virulences matching genes $\operatorname{Pm} 1, \operatorname{Pm} 2, \operatorname{Pm} 3 b, \operatorname{Pm} 4 a$, Pm 13 and $P m 20$ are rare and these can be exploited. Sivasamy et a.l (2009) reported the effectiveness of Pm6 gene in tackling the PM disease which is tightly linked to stem rust gene $\operatorname{Sr} 36$.

Materials and methods

Keeping the above in mind a meticulously planned breeding programme was initiated at ICAR-IARI, Regional station Wellington in 2010 to pyramid the effective Triticum thimopheevi- derived Pm6 gene linked to stem rust resistance gene Sr36. Thirty two popular Indian bread wheat cultivars viz.,. C 306, GW 273, HD 2009, HD 2189, HD 2285, HD 2329, HD 2402, HD 2687, HD 2733, HD 2877, HI 977, HI 1077, HP1205, HS 240, HUW 234, J 24, KALYANSONA, Lalbhahadur, LOK-1,

MACS 2496, NI 5439, NIAW 34, PBN 51, PBW 226, PBW 343, PBW 502, RAJ 3077, UP 262, UP 2338, UP 2425, WH 147 and WH 542 were taken for pyramiding of this effective Pm6/Sr36 gene with stable lines already introgressed with Lr24/Sr24, Lr19/Sr25 and Lr45 separately at ICARIARI, RS, Wellington. The genetic stock HW 4444 developed at Wellington carrying only $\operatorname{Sr} 36 / \mathrm{Pm} 6$ and Australian cultivar 'Cook' carrying Lr19/Sr25 and Sr36/Pm6 were used as donor parents and which were crossed to lines already carrying $\operatorname{Lr} 24 / S r 24$, Lr19/Sr25 and Lr45. The stable lines pyramided with $\operatorname{Sr} 36 / \mathrm{Pm} 6$ were constituted at BC2F6 stage. The conventional methodology proved successful in phenotype-based selection of resistance gene combinations in the absence of molecular markers initially and the lines which were conferring resistance against leaf, stem and powdery mildew were selected under severe rust and powdery mildew incidence at Wellington and advanced to further filial stages.

Results and discussion

The resultant lines were constituted at BC2F6 stage based on the adult plant response to rust and powdery mildew diseases under natural high disease pressure. The lines carrying Sr26/Pm6 and Lr24/Sr24, Sr36/Pm6 and Lr19/Sr25, Sr36/Pm6 and Lr45 under the background of 32 popular bread wheat cultivars were constituted. The field response to rust and powdery mildew diseases were meticulously scored for more than three seasons under natural epiphytotic conditions as given in the Table-1.

Table-1: Recurrent parent, pedigree of constituted lines, christened name, adult plant response to diseases under natural epiphytotic conditions at Wellington

SI. No.	Donors/ Backcrossed lines/ Recurrent parents /	Constituted lines	Resistance genes carried	Adult Plant response to diseases under natural epiphytotic conditions at Wellington			
				Stem Rust	Leaf Rust	Yellow Rust	Powdery mildew
1	Cook*6/C 80-1		Sr25/Lr19, Sr36/Pm6	F	F	F	1
2	C 306*2//Cook*6/C 80-1	HW 3601	Sr25/Lr19, Sr36/Pm6	F	F	F	1
3	C 306			90S	90S	F	3
4	GW 273* 2//Cook* 6/C 80-1	HW 3602	Sr25/Lr19, Sr36/Pm6	F	F		1
5	GW 273						
6	HD 2009*3//Cook*6/ C 80-1	HW 3603	Sr25/Lr19, Sr36/Pm6	F	F	F	1
7	HD 2009			40S	60S	100S	3
8	HD 2189*3//Cook*6/ C 80-1	HW 3604	Sr25/Lr19, Sr36/Pm6	F	F	F	1
9	HD 2189						
10	HD 2285*3//Cook*6/ C 80-1	HW 3605	Sr25/Lr19, Sr36/Pm6	F	F	F	1
11	HD 2285			30MS	100S	30S	3
12	HD 2329*3//Cook*6 /C 80-1	HW 3606	Sr25/Lr19, Sr36/Pm6	F	F	F	1
13	HD 2329			80S	90S	80S	3
14	HD 2402*3//Cook*6/ C 80-1	HW 3607	Sr25/Lr19, Sr36/Pm6, Sr31/Lr26/ Yr9/ Pm8	F	F	F	1
15	HD 2402			30S	100S	F	3
16	HD 2687*3//Cook*6 / C 80-1	HW 3608	Sr25/Lr19, Sr36/Pm6, Sr31/Lr26/ Yr9/ Pm8	F	F	F	1
17	HD 2687		Sr31/Lr26/ Yr9/ Pm8	10R MR	80S	F	3
18	HD 2733*3//Cook*6 / C 80-1	HW 3609	Sr25/Lr19, Sr36/Pm6	F	F		1
19	HD 2733						
20	HD 2877*3//Cook*6 / C 80-1	HW 3610	Sr25/Lr19, Sr36/Pm6	F	F	F	1
21	HD 2877				80S		
22	HI 977*3//Cook*6 / C 80-1	HW 3611	Sr25/Lr19, Sr36/Pm6	F	F		1
23	HI 977						
24	HI 1077*3//Cook*6 / C 80-1	HW 3612	Sr25/Lr19, Sr36/Pm6	F	F		1
25	HI 1077			30MS S	50S	40MS	3
26	HP 1205*3//Cook*6 / C 80-1	HW 3613	Sr25/Lr19, Sr36/Pm6	F	F		1
27	HP 1205						
28	HS 240*3//Cook*6 / C 80-1	HW 3614	Sr25/Lr19, Sr36/Pm6, Sr31/Lr26/ Yr9/ Pm8	F	F	F	1
29	HS 240		Sr31/Lr26/ Yr9/ Pm8	5R MR	70S	F	3
30	HUW 234*3//Cook* 6 /C 80-1	HW 3615	Sr25/Lr19, Sr36/Pm6	F	F	F	1
31	HUW 234			20MS S	100S	F	3
32	J 24*3//Cook*6/C 80-1	HW 3616	Sr25/Lr19, Sr36/Pm6	F	F	F	1
33	J 24			90S	100S	100S	3
34	Kalyansona*3//Cook*6/C 80-1	HW 3617	Sr25/Lr19, Sr36/Pm6	F	F	F	1
35	Kalyansona			80S	80S	90S	3
36	Lal Bahadur*3// Cook*6/C 80-1	HW 3618	Sr25/Lr19, Sr36/Pm6	F	F	F	1
37	Lal Bahadur				80S		3
38	Lok-1*3//Cook*6/C 80-1	HW 3619	Sr25/Lr19, Sr36/Pm6	F	F	F	1
39	Lok-1			70S	80S	80S	3
40	MACS 2496*3//Cook *6/C 80-1	HW 3620	Sr25/Lr19, Sr36/Pm6	F	F	F	1
41	MACS 2496				90S		3
42	NI 5439*3//Cook*6/ C 80-1	HW 3621	Sr25/Lr19, Sr36/Pm6	F	F	F	1
43	NI 5439			90S	90S	100S	3
44	NI 5439*3//Cook*6/ C 80-1	HW 3621A	Sr25/Lr19, Sr36/Pm6	F	F	F	1
45	NI 5439			90S	90S	100S	3
46	NIAW34*3//Cook*6/ C 80-1	HW 3622	Sr25/Lr19, Sr36/Pm6	F	F		1
47	NIAW 34						

48	PBN 51*3//Cook*6 /C 80-1	HW 3623	Sr25/Lr19, Sr36/Pm6				
49	PBN 51						
50	PBW 226*3//Cook*6 /C 80-1	HW 3624	Sr25/Lr19, Sr36/Pm6	F	F	F	1
51	PBW 226			20 S	90S	F	3
52	PBW 343*3//Cook*6 /C 80-1	HW 3625	Sr25/Lr19, Sr36/Pm6	F	F		1
53	PBW 343				80S		3
54	PBW 502*3//Cook*6 /C 80-1	HW 3626	Sr25/Lr19, Sr36/Pm6	F	F		1
55	PBW 502						3
56	Raj 3077*3//Cook*6 /C 80-1	HW 3627	Sr25/Lr19, Sr36/Pm6	F	F		1
57	Raj 3077						3
58	Raj 3077*3//Cook*6 /C 80-1	HW 3627 A	Sr25/Lr19, Sr36/Pm6	F	F		1
59	Raj 3077						3
60	UP 262*3//Cook*6/C 80-1	HW 3628	Sr25/Lr19, Sr36/Pm6	F	F	F	1
61	UP 262			50S	50S	50S	3
62	UP 2338*3//Cook* 6/C 80-1	HW 3629	Sr25/Lr19, Sr36/Pm6	F	F	F	1
63	UP 2338			70S	80S	80S	3
64	UP 2425*3//Cook* 6/C 80-1	HW 3630	Sr25/Lr19, Sr36/Pm6	F	F		1
65	UP 2425						
66	WH 147*3//Cook*6 /C 80-1	HW 3631	Sr25/Lr19, Sr36/Pm6	F	F	F	1
67	WH 147			90S	90S	90S	3
68	WH 542*3//Cook*6 /C 80-1	HW 3632	Sr25/Lr19, Sr36/Pm6, Sr31/Lr26/ Yr9/ Pm8	F	F	F	1
69	WH 542		Sr31/Lr26/ Yr9/ Pm8	10R MR	80S	F	3
70	Yr10*3//Cook*6 /C 80-1	HW 3633	Sr25/Lr19, Sr36/Pm6	F	F	F	1
71	Yr10			10R MR	80S	F	3
72	Yr 15*3//Cook*6 /C 80-1	HW 3634	Sr25/Lr19, Sr36/Pm6	F	F	F	1
73	Yr 15				90S	F	3
74	RL 6144// HW 4444		Sr36/ Pm6, Lr45	F	F	F	1
75	C306*3// RL 6144// HW 4444	HW 3637	Sr36/ Pm6, Lr45	10R MR	F	F	3
76	C 306			90S	90S	F	3
77	$\begin{aligned} & \hline \text { GW 273*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3638	Sr36/ Pm6, Lr45		F	F	
78	GW 273						
79	$\begin{aligned} & \text { HD 2189*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3639	Sr36/ Pm6, Lr45		F	F	
80	HD 2189						
81	$\begin{aligned} & \text { HD 2285*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3640	Sr36/ Pm6, Lr45	10R MR	F	F	3
82	HD 2285			30MS	100S	305	3
83	$\begin{aligned} & \text { HD 2329*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3641	Sr36/ Pm6, Lr45	10R MR	F	F	3
84	HD 2329			80S	90S	90S	3
85	$\begin{aligned} & \text { HD } 2402 \text { *3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3642	Sr36/ Pm6, Lr45	TR	F	F	3
86	HD 2402			30 S	100S	F	3
87	HD 2687*3// RL 6144 // HW	HW 3643	Sr36/ Pm6, Lr45, Sr31/Lr26/ Yr9/ Pm8	10R MR	F	F	3
88	HD 2687		Sr31/Lr26/ Yr9/ Pm8	15R MR	80S	F	3
89	$\begin{aligned} & \text { HD 2733*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3644	Sr36/ Pm6, Lr45		F	F	
90	HD 2733						
91	$\begin{aligned} & \text { HD 2877*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3645	Sr36/ Pm6, Lr45	5 MR	F	F	3
92	HD 2877			5MR	40SS	F	3
93	HI 977*3// RL 6144 // HW 4444	HW 3646	Sr36/ Pm6, Lr45	F	F	F	3

94	HI 977			F	60 S	40S	2
95	$\begin{aligned} & \text { HI 1077*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3647	Sr36/ Pm6, Lr45	10R MR	F	F	3
96	HI 1077			30MS S	50 S	40S	3
97	$\begin{aligned} & \hline \text { HP 1205*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3648	Sr36/ Pm6, Lr45	15R MR	F	F	3
98	HP 1205			60 SS	80SS	90S	3
99	HS 240*3// RL 6144 // HW 4444	HW 3649	Sr36/ Pm6, Lr45, Sr31/Lr26/ Yr9/ Pm8	5R MR	F	F	3
100	HS 240		Sr31/Lr26/ Yr9/ Pm8	5R MR	708	F	3
101	$\begin{aligned} & \text { HUW 234*3// RL 6144// HW } \\ & 4444 \end{aligned}$	HW 3650	Sr36/ Pm6, Lr45		F	F	
102	HUW 234						
103	J 24*3// RL 6144 // HW 4444	HW 3651	Sr36/ Pm6, Lr45	10R MR	F	F	3
104	J24			90S	100S	100S	3
105	$\begin{aligned} & \text { Kalyasona*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3652	Sr36/ Pm6, Lr45	15R MR	F	F	3
106	Kalyansona			80S	908	90S	3
107	$\begin{aligned} & \text { LalBahadur*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3653	Sr36/ Pm6, Lr45		F	F	
108	LalBahadur						
109	Lok 1*3// RL 6144 // HW 4444	HW 3654	Sr36/ Pm6, Lr45	10R MR	F	F	3
110	Lok-1			70S	80 S	80S	3
111	$\begin{aligned} & \text { MACS 2496*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3655	Sr36/ Pm6, Lr45	10R MR	F	F	3
112	MACS 2496						
113	$\begin{aligned} & \text { NI 5439*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3656	Sr36/ Pm6, Lr45	15R MR	F	F	3
114	NI 5439			90S	90 S	100S	3
115	$\begin{aligned} & \text { NIAW } 34 * 3 / / \text { RL } 6144 / / \mathrm{HW} \\ & 4444 \end{aligned}$	HW 3657	Sr36/ Pm6, Lr45	10R MR	F	F	3
116	NIAW 34			90S	908	90S	3
117	PBN 51*3// RL 6144 // HW 4444	HW 3658	Sr36/ Pm6, Lr45	10R MR	F	F	2
118	PBN 51			20MR	40S	S	2
119	$\begin{aligned} & \hline \text { PBW 226*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3659	Sr36/ Pm6, Lr45	10R MR	F	F	3
120	PBW 226			20S	905	F	3
121	$\begin{aligned} & \text { PBW 343*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3660	Sr36/ Pm6, Lr45	10R MR	F	F	3
122	PBW 343			20MR	608	5S	3
123	$\begin{aligned} & \text { PBW 502*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3661	Sr36/ Pm6, Lr45	10R MR	F	F	3
124	PBW 502						
125	$\begin{aligned} & \text { Raj 3077*3// RL 6144// HW } \\ & 4444 \end{aligned}$	HW 3662	Sr36/ Pm6, Lr45	5 MR	F	F	1
126	Raj 3077			5MR	60SS	60SS	1
127	$\begin{aligned} & \text { Raj 3077*3// RL 6144// HW } \\ & 4444 \end{aligned}$	HW 3662 A	Sr36/ Pm6, Lr45	5 MR	F	F	1
128	Raj 3077			5MR	60SS	60SS	1
129	$\begin{aligned} & \text { UP } 2338 * 3 / / \text { RL } 6144 / / \mathrm{HW} \\ & 4444 \end{aligned}$	HW 3663	Sr36/ Pm6, Lr45		F	F	
130	UP2338						
131	$\begin{aligned} & \text { UP 2425*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3664	Sr36/ Pm6, Lr45		F	F	
132	UP 2425						
133	WH 147*3// RL 6144 // HW	HW 3665	Sr36/ Pm6, Lr45	10R MR	F	F	3

	4444						
134	WH 147			90S	90S	90S	3
135	$\begin{aligned} & \text { WH 542*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3666	Sr36/ Pm6, Lr45, Sr31/Lr26/ Yr9/ Pm8	10R MR	F	F	3
136	WH 542		Sr31/Lr26/ Yr9/ Pm8	10R MR	80S	F	3
137	$\begin{aligned} & \text { TR380-14*7/3Ag\# 14// HW } \\ & 4444 \end{aligned}$		Lr24/Sr24, Sr36/Pm6	F	F	F	1
138	$\begin{aligned} & \text { C306*3 //TR380-14*7/3Ag\# } \\ & \text { 14// HW } 4444 \end{aligned}$	HW 3668	Lr24/Sr24, Sr36/Pm6	F	F	F	1
139	C 306			90S	90S	F	3
140	GW 273*3//TR380-14*7/3Ag\# 14// HW 4444	HW 3669	Lr24/Sr24, Sr36/Pm6	F	F	F	1
141	GW 273						
142	$\begin{aligned} & \text { HD 2009*3 //TR380-14*7/3Ag\# } \\ & \text { 14// HW } 4444 \end{aligned}$	HW 3670	Lr24/Sr24, Sr36/Pm6	F	F	F	1
143	HD 2009						
144	$\begin{aligned} & \text { HD 2189*3//TR380-14*7/3Ag\# } \\ & \text { 14// HW } 4444 \\ & \hline \end{aligned}$	HW 3671	Lr24/Sr24, Sr36/Pm6	F	F	F	1
145	HD 2189						
146	$\begin{aligned} & \text { HD 2285*3//TR380-14*7/3Ag\# } \\ & \text { 14// HW } 4444 \end{aligned}$	HW 3672	Lr24/Sr24, Sr36/Pm6	F	F	F	1
147	HD 2285			30MS	100S	30S	3
148	$\begin{aligned} & \text { HD 2329*3// RL } 6144 \text { // HW } \\ & 4444 \end{aligned}$	HW 3673	Lr24/Sr24, Sr36/Pm6	F	F	F	1
149	HD 2329			80S	90S	90S	3
150	$\begin{aligned} & \text { HD } 2402 \text { *3 //TR380-14*7/3Ag\# } \\ & 14 / / \text { HW } 4444 \end{aligned}$	HW 3674	Lr24/Sr24, Sr36/Pm6	F	F	F	1
151	HD 2402			30S	100S	F	3
152	$\begin{aligned} & \text { HD 2687*3 //TR380-14*7/3Ag\# } \\ & \text { 14// HW } 4444 \end{aligned}$	HW 3675	Lr24/Sr24, Sr36/Pm6, Sr31/Lr26/ Yr9/ Pm8	F	F	F	1
153	HD 2687		Sr31/Lr26/ Yr9/ Pm8	15R MR	80S	F	3
154	$\begin{aligned} & \text { HD 2733*3//TR380-14*7/3Ag\# } \\ & \text { 14// HW } 4444 \\ & \hline \end{aligned}$	HW 3676	Lr24/Sr24, Sr36/Pm6	F	F	F	1
155	HD 2733						
156	HD 2877*3 //TR380-14*7/3Ag\# $\text { 14// HW } 4444$	HW 3677	Lr24/Sr24, Sr36/Pm6	F	F	F	1
157	HD 2877			5MR	40SS	F	3
158	$\begin{aligned} & \text { HI 977*3 //TR380-14*7/3Ag\# } \\ & \text { 14// HW 4444 } \end{aligned}$	HW 3678	Lr24/Sr24, Sr36/Pm6	F	F	F	1
159	HI 977			F	60S	40S	2
160	$\begin{aligned} & \text { HI 1077*3 //TR380-14*7/3Ag\# } \\ & \text { 14// HW } 4444 \end{aligned}$	HW 3679	Lr24/Sr24, Sr36/Pm6	F	F	F	1
161	HI 1077			30MS S	50S	40S	3
162	$\begin{aligned} & \text { HP } 1205 * 3 / / T R 380-14 * 7 / 3 \mathrm{Ag} \mathrm{\#} \\ & \text { 14// HW } 4444 \end{aligned}$	HW 3680	Lr24/Sr24, Sr36/Pm6	F	F	F	1
163	HP 1205			60 SS	80SS	90S	3
164	$\begin{aligned} & \text { HS 240*3//TR380-14*7/3Ag\# } \\ & 14 / / \text { HW } 4444 \end{aligned}$	HW 3681	Lr24/Sr24, Sr36/Pm6, Sr31/Lr26/ Yr9/ Pm8	F	F	F	1
165	HS 240		Sr31/Lr26/ Yr9/ Pm8	5R MR	70S	F	3
166	HUW 234*3 //TR38014*7/3Ag\# 14// HW 4444	HW 3682	Lr24/Sr24, Sr36/Pm6	F	F	F	1
167	HUW 234						
168	$\begin{aligned} & \text { J } 24 * 3 \text { //TR380-14*7/3Ag\# 14// } \\ & \text { HW } 4444 \end{aligned}$	HW 3683	Lr24/Sr24, Sr36/Pm6	F	F	F	1
169	J24			90S	100S	100S	3

170	Kalyasona*3 //TR380- 14*7/3Ag\# 14// HW 4444	HW 3684	Lr24/Sr24, Sr36/Pm6	F	F	F	1
171	Kalyansona			80S	90S	90S	3
172	Kalyasona*3 //TR38014*7/3Ag\# 14// HW 4444	HW 3685	Lr24/Sr24, Sr36/Pm6	F	F	F	1
173	Kalyansona			80S	90S	90S	3
174	LalBahadur*3 //TR38014*7/3Ag\# 14// HW 4444	HW 3686	Lr24/Sr24, Sr36/Pm6	F	F	F	1
175	LalBahadur						
176	Lok 1*3 //TR380-14*7/3Ag\# 14// HW 4444	HW 3687	Lr24/Sr24, Sr36/Pm6	F	F	F	1
177	Lok-1			70S	80S	80S	3
178	MACS 2496*3 //TR38014*7/3Ag\# 14// HW 4444	HW 3688	Lr24/Sr24, Sr36/Pm6	F	F	F	1
179	MACS 2496						
180	$\begin{aligned} & \text { NI 5439*3//TR380-14*7/3Ag\# } \\ & \text { 14// HW } 4444 \\ & \hline \end{aligned}$	HW 3689	Lr24/Sr24, Sr36/Pm6	F	F	F	1
181	NI 5439			90S	90S	100S	3
182	NIAW 34*3 //TR380-14*7/3Ag\# 14// HW 4444	HW 3690	Lr24/Sr24, Sr36/Pm6	F	F	F	1
183	NIAW 34			90S	90S	90S	3
184	PBN 51*3 //TR380-14*7/3Ag\# 14// HW 4444	HW 3691	Lr24/Sr24, Sr36/Pm6	F	F	F	1
185	PBN 51			20MR	40S	S	2
186	$\begin{aligned} & \hline \text { PBW } 226 * 3 \text { //TR380-14*7/3Ag\# } \\ & 14 / / \text { HW } 4444 \end{aligned}$	HW 3692	Lr24/Sr24, Sr36/Pm6	F	F	F	1
187	PBW 226			20S	90S	F	3
188	PBW 343*3 //TR380-14*7/3Ag\# 14// HW 4444	HW 3693	Lr24/Sr24, Sr36/Pm6	F	F	F	1
189	PBW 343			20MR	60S	5S	3
190	$\begin{aligned} & \hline \text { PBW 502*3 //TR380-14*7/3Ag\# } \\ & \text { 14// HW } 4444 \end{aligned}$	HW 3694	Lr24/Sr24, Sr36/Pm6	F	F	F	1
191	PBW 502						
192	$\begin{aligned} & \text { Raj } 3077 * 3 / / \text { TR380-14*7/3Ag\# } \\ & \text { 14// HW } 4444 \\ & \hline \end{aligned}$	HW 3695	Lr24/Sr24, Sr36/Pm6	F	F	F	1
193	Raj 3077			5MR	60SS	60SS	1
194	$\begin{aligned} & \text { Raj } 3077 * 3 / / \text { TR380-14*7/3Ag\# } \\ & \text { 14// HW } 4444 \end{aligned}$	HW 3695 A	Lr24/Sr24, Sr36/Pm6	F	F	F	1
195	Raj 3077			5MR	60SS	60SS	1
196	$\begin{aligned} & \text { UP 262*3 //TR380-14*7/3Ag\# } \\ & \text { 14// HW } 4444 \end{aligned}$	HW 3696	Lr24/Sr24, Sr36/Pm6	F	F	F	1
197	UP262						
198	$\begin{aligned} & \text { UP 2338*3 //TR380-14*7/3Ag\# } \\ & \text { 14// HW } 4444 \end{aligned}$	HW 3697	Lr24/Sr24, Sr36/Pm6	F	F	F	1
199	UP2338						
200	$\begin{aligned} & \text { UP } 2425 * 3 \text { //TR380-14*7/3Ag\# } \\ & \text { 14// HW } 4444 \end{aligned}$	HW 3698	Lr24/Sr24, Sr36/Pm6	F	F	F	1
201	UP 2425						
202	WH 147*3 //TR380-14*7/3Ag\# 14// HW 4444	HW 3699	Lr24/Sr24, Sr36/Pm6	F	F	F	1
203	WH 147			90S	90S	90S	3
204	WH 542*3 //TR380-14*7/3Ag\# 14// HW 4444	HW 3700	Lr24/Sr24, Sr36/Pm6, Sr31/Lr26/ Yr9/ Pm8	F	F	F	1
205	WH 542		Sr31/Lr26/ Yr9/ Pm8	10R MR	80S	F	3

The constituted lines carrying Sr36/Pm6 were showing resistant reaction to powdery mildew under 'hot spot' evaluation were subsequently confirmed for the presence of Sr36/Pm6 molecularly. These are expected to serve as genetic resources for further
wheat improvement in the country or if it is properly evaluated for yield under coordinated wheat improvement programmme it can be released as cultivars. From these seven wheat stocks has been registered as genetic stock with NBPGR, New Delhi.

Confirmation of Sr36 gene using STM marker STM773-2

M- Marker (100bp); Lane 1- Cook (Sr36) (positive control); Lane 2- HSB 6
(Recurrent parent); Lanes 3-19 HSB $6 \times \operatorname{Sr} 24, \operatorname{Sr} 36\left(\mathrm{BC}_{1} \mathrm{~F}_{3}\right.$ pyramided lines)

Stem, leaf, stripe rusts and Powdery mildew Resistant wheat stocks

References

Butler, EJ (1925). Meterological condition and Plant disease intern. Rev. Sci. \& Pract. Agri. N. S. 3: 369-84.

Everts KL, Leath S (1992). Effect of early season powdery mildew on development, survival, and yield contribution of tillers of winter wheat. Phytopathology 82:1273-1278

Hardwick NV, Jenkins JEE, Collins B, Groves SJ (1994). Powdery mildew (Erysiphe graminis) on winter wheat: control with fungicides and the effects on yield. Crop Prot. 13:93-98

Huang XQ, Roder MS (2004). Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica 137:203-223

Annual Crop protection report (2006 - 2017). Indian Institute of wheat and barley Research, IIWBR, Karnal, India

Leath S, Bowen KL (1989). Effects of powdery mildew, triadimenol seed treatment, and triadimefon foliar sprays on yield of winter wheat in North Carolina. Phytopathology 79:152-155

McIntosh RA, Yamazaki Y. Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008). Catalogue of gene symbols for wheat. http://wheat.pw.usda.gov/GG2/Triticum/ wgc/2008/.

Mehta, K. C. 1930. Studies on annual recurrence of powdery mildew of wheat and barley in India. Agric. Jour. India 25 : 283-86.

Pathak, K. D. and Joshi, L. M. 1972. Chemical control of powdery mildew of wheat. Indian Phytopath. 25:139--41

Robert A. McIntosh, Peng Zhang,Christina Cowger, Ryan Parks, Evans S. Lagudah, Sami Hoxha (2011). Rye-derived powdery mildew resistance gene Pm 8 in wheat is suppressed by the Pm3 locus. Theor Appl Genet. 123:359-367

Sivasamy.M, Vinod, Sushma Tlwari, R. S.Tornar, Bhanwar Singh , J. B. Sharma, S. M. S.Tomar and Suresh Chand (2009). Introgression of useful linked genes for resistance to stem rust, leaf rust and powdery mildew and their molecular validation in wheat (Triticum aestivum L.) . Indian J. Genet., 69(1):17-27

Development of innovative methods for urediospore conidiogenesis from aecia of Puccina spp from Barberry habituated in Nilgiri Hills

P. Nallathambi ${ }^{1}$, C. Uma Maheswari ${ }^{1}$, C. Manjunatha ${ }^{1}$, J. Berliner ${ }^{1}$, M. Sivasamy 1 , Jagdish Kumar 2 and Rajesh Kumar Meena ${ }^{1}$

${ }^{1}$ ICAR-Indian Agricultural Research Institute, Regional Station, Wellington- 643231
${ }^{2}$ ICAR-National Research Institute for Biotic Stress Management, Raipur, Chatishgarh

The establishment of infection for pathogenesis investigation is important event to ascertain disease cycle in crop plants. The synthetic or semi-synthetic media are not suitable to culture biotrophic fungal pathogens like Puccinia species but utility of host plants either as whole or its callus culture may be suitable to grow certain stages of Puccinia spp. In our routine varietal evaluation procedures, urediospores are recurrently deposited on moist leaves of desired genotypes. These dikaryotic spores are artificially placed over tender leaves with help of sterile inoculation tools like lancet needle under controlled conditions like glass houses, growth chambers and poly houses etc. However, to investigate complete life cycle of target pathogens by using the sexual or dikaryotic spores from their respective stages viz., pycnia, aecia and basidiospores from telia, lancet needle inoculation may not be suitable in certain circumstances, owing to sensitiveness and fragile to handle such spores for cross inoculations. Although, cross inoculation of aeciospores from aecia is found to be convenient host injuries and cross contamination of the inoculums are not ruled out. Therefore, alternate strategies were worked out and simple methods of inoculation were devised with available
facilities under ambient conditions. Seeds of susceptible varieties (WH147 and Agra local) were sown in paper cups as well as differential set plastic boxes. Plastic boxes were shifted to Barberry bushes wherein recurrent isolates have been made and placed in such a way that test plants seedlings receive natural weather conditions as similar to Barberry plants without performing any artificial inoculations. Seedling plants were also kept in wire baskets ($17 \times 15 \mathrm{~cm}^{2}$). Plants were placed on plastic trays. Top of boxes were covered by plastic lids having square shape holes $\left(1 \mathrm{~cm}^{2}\right)$ and the aecia along with Barberry leaves were placed down side. Likewise, entire top of baskets was covered by layering Barberry leaves and covered by moist cloths in layers with direct likely contact on leaves (Plate 14). Blotter papers were used for final covering. Sterile water was sprinkled to maintain adequate moisture in these mini chambers and incubated under aseptic conditions for 3 days with intermittent blow of sterile air from laminar flow chamber. Seedlings were observed at 24 h intervals for deposition of aeciospores and marked. Seedlings were shifted to glass house after 24 h of hardening and discarding barberry leaves. Critical observations were carried out constantly on all seedlings.

Plate 1. Preparation of seedlings

Plate 2. Arrangement of Barberry with Aecia

Plate 5 Aeciospores dropped on leaves

Plate 8. Urediospores of black

Plate 3. Seedling leaves to receive aeciospores

Plate 6. Brown rust incidence

Plate 9. Urediospores of brown
rust

Overall data revealed the flow of aeciospores from aecial cups and deposition over tender leaves of wheat and subsequent infections on later case (Plates 5 and 6). However, infection rate was very less and slow as compared to artificial inoculations in both sets of experiment. Black and brown rusts infections were observed and their respective pathogens were also confirmed under light microscope (Plates 6-9). Further
works are in progress to adopt these innovative methods to trap natural inoculums and purification of other obligate fungal pathogens of wheat. Works are also in progress to investigate their phenotypic and molecular characterization of both rusts pathogens and their associated relationships on pathogenesis on wheat and allied crops and economic significances.

Awards:

Dr.M.Sivasamy, PS and Head and Dr.P.Jayaprakash Principal Scientist, IARI, Regional Station Wellington has been awarded, the fellow of Indian Society of Plant Breeding and Genetics 2017

