## White backed planthopper (WBPH) transmitted Southern Rice Black-streaked Dwarf Virus (SRBSDV) Disease: Update, identification and management

Rice cultivation in Northern India is facing a threat from the Southern rice black-streaked dwarf virus (SRBSDV). This virus was first detected in Indian rice fields during the *Kharif* season of 2022 in Punjab, Haryana, and Uttarakhand. As of early *Kharif* 2025, symptoms of the virus are being reported again from various regions in Punjab and Haryana.

#### **Disease symptoms in rice plants**

- The virus attack rice crop at all growth stages, but the severity depends on the stage of the crop at which the infestation starts.
- The major symptoms are severe stunting with stiff leaves, followed by yellowing, drying and withering.
- Severe stunting causes the affected plants to reach up to a quarter of the height of a normal plant.
- Undeveloped root system is another characteristic symptom.
- Infestation at early stage causes excessive tillering and fail in panicle formation.



- Infection at the later stages does not cause stunting, but lead to small spikes with barren grains.
- Appearance of branches from nodes on and poorly developed root systems is another symptom.



Undeveloped root system



Excessive tillering, stiff leaves, yellowing,



Stunting in plants (plants collected from same field)

### Virus Spread ISION OF ENTOMOLOGY

- The virus is transmitted by the insect, white-backed planthopper (WBPH-Sogatella furcifera,)
- The weather factors prevailing in the area causes the early infestation of WBPH in field even in nursery stage.
- The migration of WBPH from one plant to another plant and one place to another causes the spread of the disease.

#### **WBPH identification**

WBPH nymphs and adults cause spread of the disease. The insects inhabits at the base of the plant, above the water level.



Adult WBPH

**Adults**: Light brown or greyish colour with slender and wedge-shaped body, size is 3–4 mm long, transparent wings with a distinct white stripe on the back.

**Nymphs**: Pale yellowish/greyish-white in colour, dorsal surface of the thorax and abdomen marked with grey and white markings.



#### **Monitoring in field**

WBPH and BPH population in field

- The insect is prone to attack during humid and cloudy conditions.
- Gently shake the rice plants to see the nymphs or adults falling of the water surface or flying.
- Check base of plants for clusters of nymphs.
- Look for patches of yellowing or drying plants.

#### Integrated Management of the Vector, WBPH

- Management of disease mainly relies on the WBPH control in field
- Growing resistant/tolerant cultivars in the threatened areas
- Installation of light traps for monitoring WBPH adult activity
- Keep the nursery area, field and premises weed free
- Removal of the affected plant from the field is beneficial for further spread of the disease
- It is advised not to use seeds from infected crop in next season
- Monitoring in the nursery: A prophylactic insecticide spray in the nursery at 15-20 days old seedlings with insecticides can kill the insect in nursery stage.
- Insecticides can be recommended for spraying to kill the WBPH which spread the virus disease.

Insecticide recommended for management of White backed planthopper

| Sl no | Chemical compound Chemical compound    | Dosage            |
|-------|----------------------------------------|-------------------|
|       | Insecticides                           |                   |
| 1.    | Benzpyrimoxan 10% SC _ पवि-जीवन कृष्ट  | 1.5 ml/litre      |
| 2.    | Dinotefuran 70 % WG                    | 0.2 gm/l          |
| 3     | Ethofenoprox 10 % EC                   | 1 ml/l            |
| 4.    | Fipronil 05 % SC                       | 2 ml/1 <b>ULU</b> |
| 5.    | Fipronil 00.30 % GR                    | 16-25 kg/ha       |
| б.    | Flonicamid 50 % WG                     | 0.3 gm/l          |
| 7.    | Imidacloprid 70 % WG                   | 0.1 gm/l          |
| 8.    | Imidacloprid 17.80 % SL                | 0.2 ml/l          |
| 9.    | Sulfoxaflor 21.8 % SC                  | 0.75 ml/l         |
| 10.   | Thiamethoxam 25 % WG                   | 0.2 gm/l          |
| 11.   | Triflumezopyrim 10% SC                 | 0.47 ml/l         |
| 12.   | Triflumezopyrim 20% WG                 | 0.25 gm/l         |
| 13.   | Benzpyrimoxan 10% + Pymetrozine 20% WG | 1 gm/l            |

| 14. | Benzpyrimoxan 10% + Thiamethoxam 3.3% SC                   | 1.5 ml/l          |
|-----|------------------------------------------------------------|-------------------|
| 15. | Dinotefuran 11% + Pymetrozine 36% WG                       | 0.7 gm/l          |
| 16. | Dinotefuran 15 % + Pymetrozine 45% WG                      | 0.67 gm/l         |
| 17. | Fipronil 04 % + Thiamethoxam 04 % w/w SC                   | 2.2 ml/l          |
| 18. | Pymetrozine 11.3% w/w + Triflumezopyrim 1.9% w/w SC        | 2 ml/l            |
| 19. | Thiocyclam Hydrogen Oxalate 3.0% + Clothianidin<br>1.2% GR | 10-12.5 kg per ha |
| 20. | Triflumezopyrim 4.79% + Spinetoram 8.62% w/w SC            | 1 ml/l            |

(Source: CIBRC recommendation dated 31.03.2025)

#### Compiled and Edited by:

Rajna S, Suresh M. Nebapure, M.K Dhillon Division of Entomology, ICAR-IARI, New Delhi Contact: head\_ento@iari.res.in

# **Division of Entomology**