

ICAR
INDIAN AGRICULTURAL
RESEARCH INSTITUTE,
REGIONAL STATION,
WELLINGTON
TAMIL NADU

NILGIRI WHEAT NEWS

VOLUME 12 JAN -DEC 2024

ISSUE 12

CONTENTS

Sl.No.	Content	Page No
1.	Gene Stewardship in developing improved Indian bread wheat cultivars and genetic stocks with low terminal disease value-A compendium –Part-III: Introgression of Stripe rust resistance genes	3-17
2.	DUS Characterization of Indian Released Varieties Using Agro-Morphological Descriptors	18-26
3.	Characterization of Indian released varieties for its genetic basis of resistance and stem solidness	27-42
4.	Field Visits	42-43

Editorial Board

Dr. M. Sivasamy, Principal Scientist & Head: Nodal Officer

Dr. V. K. Vikas, Scientist	: Editor
Dr. P.Jayaprakash, Pr.Sci	: Co-editor
Dr. C. Uma Maheswari, Pr.Sci	: Member
Dr. P. Nallathambi, Pr.Sci	: Member

Dr. Jagdish Kumar : Founder

Gene Stewardship in developing improved Indian bread wheat cultivars and genetic stocks with low terminal disease value-A *compendium –Part-III: Introgression of Stripe rust resistance genes*

Sivasamy M^{1*}, P. Jayaprakash¹, V.K.Vikas¹, C. Uma Maheswari¹, P.Nallathambi¹, Nisha.R¹, P. Shajitha¹, Niharikha Mallick², Rajbir Yadav², S.C.Bhardwaj³, O.P. Gangwar³, K. Sivan¹, C. Arun Kumar¹ and John Peter¹

¹ICAR-Indian Agricultural Research Institute Regional Station, Wellington, Tamil Nadu -643 231, India

²ICAR-Division of Genetics, Indian Agricultural Research Institute, Pusa, New Delhi-12, India

³ICAR - Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla-171001, India

***Corresponding author:**
iariwheatsiva@gmail.com

Introduction

Wheat (*Triticum aestivum* L.) is one of the most important staple cereal crops globally, providing nearly 20% of the calories and protein consumed by the world's population and serving as a primary food source for more than 35% of humanity (Juliana et al., 2017). In India, wheat is the second most important cereal crop after rice and plays a crucial role in national food and nutritional security, particularly in the North Western Plains Zone (NWPZ), Northern Hills Zone (NHZ), and North Eastern Plains Zone (NEPZ). Sustaining wheat productivity under increasing biotic and abiotic stresses remains a major challenge for Indian agriculture.

Among biotic stresses, stripe rust or yellow rust is one of the most destructive diseases of wheat worldwide. Stripe rust is caused by the obligate biotrophic fungus *Puccinia striiformis* f. sp. *tritici* (Pst), which infects leaves and leaf sheaths, forming characteristic yellow-orange pustules arranged in stripes along the veins (Chen, 2005). The pathogen is highly adaptable, capable of long-distance dispersal through airborne urediniospores, rapid multiplication, and continuous evolution of new virulent races, allowing it to overcome host resistance genes (Line, 2002; Chen, 2005). Stripe rust thrives under cool and humid conditions, making the Indian wheat-growing regions—particularly the NHZ and NWPZ—highly vulnerable to epidemics.

Stripe rust poses a serious global threat, with epidemics reported across Asia, Europe, Africa, the Americas, and Australasia, and an estimated 80% of the global wheat area exposed to some level of risk (Chen, 2005). Yield losses typically range from 10–70%, but can reach 90–100% when infection occurs at early growth stages on susceptible cultivars under favorable environmental conditions (Chen, 2005). In India, stripe rust epidemics have repeatedly caused significant yield losses and necessitated the withdrawal of once-popular wheat varieties due to resistance breakdown (Singh et al., 2015; Sharma et al., 2021). The continual emergence of new pathotypes has made stripe rust one of the most persistent constraints to stable wheat production in the country.

Genetic resistance is widely recognized as the most economical, environmentally safe, and sustainable strategy for managing stripe rust compared with chemical control

(Chen, 2005). Resistance genes against stripe rust, designated as *Yr* genes, are broadly classified into seedling resistance or all-stage resistance (ASR) genes and adult plant resistance (APR) genes. ASR genes typically provide race-specific, high-level resistance expressed from the seedling stage, whereas APR genes confer partial, race-nonspecific resistance that

becomes effective at later growth stages and is generally more durable (Lupton and Macer, 1962; Chen, 2005). To date, more than 80 formally designated *Yr* genes (*Yr1*–*Yr86*) and over 300 quantitative trait loci (QTLs) for stripe rust resistance have been reported in wheat and its relatives (Li et al., 2020; Klymiuk et al., 2022).

Table 1 Catalogue of wheat, rye and triticale resistance genes based on the catalogue of gene symbols for wheat (McIntosh et al. 2003). Genes with available DNA markers are marked with asterisks

Wheat	Source	Rye	Chromosomal location
<i>Yr1</i>	<i>T.aestivum</i>		2AL
<i>Yr2</i>	<i>T.aestivum</i>		7B
<i>Yr a-c</i>	<i>T.aestivum</i>		1B
<i>Yr4a-b</i>	<i>T.aestivum</i>		6B
<i>Yr5*</i>	<i>T.spelta album</i>		2BL
<i>Yr6</i>	<i>T.aestivum</i>		7BS
<i>Yr7</i>	<i>T.aestivum</i>		2BL
<i>Yr8</i>	<i>Aegilops comosa</i>		2D=T2DS- 2M#1L.2M#1S
<i>Yr9*</i>	<i>Secale cereale</i>	<i>Yr1</i>	1RS.1BL
<i>Yr10*</i>	<i>T.spelta</i>		1BS
<i>Yr11</i>	<i>T.aestivum</i>		
<i>Yr12</i>	<i>T.aestivum</i>		
<i>Yr13</i>	<i>T.aestivum</i>		
<i>Yr14</i>	<i>T.aestivum</i>		
<i>Yr15*</i>	<i>T.dicoccoides</i>		1BS
<i>Yr16</i>	<i>T.aestivum</i>		2D
<i>Yr17*+Lr37+Sr38</i>	<i>Aegilops ventricosa</i>		2AS
<i>Yr18*</i>	<i>T.aestivum</i>		7DS
<i>Yr19</i>	<i>T.aestivum</i>		5B

<i>Yr20</i>	<i>T.aestivum</i>		6D
<i>Yr21</i>	<i>T.aestivum</i>		1B
<i>Yr22</i>	<i>T.aestivum</i>		4D
<i>Yr23</i>	<i>T.aestivum</i>		6D
<i>Yr24</i>	<i>T.aestivum</i>		1BS
<i>Yr25</i>	<i>T.aestivum</i>		1D
<i>Yr26*</i>	<i>Haynaldia villosa</i>		6AS(6AL.6VS)
<i>Yr27+Lr13</i>	<i>T.aestivum</i>		2BS
<i>Yr28*</i>	<i>T.tauschii</i>		4DS
<i>Yr29+Lr46</i>	<i>T.aestivum</i>		1BL
<i>Yr30+Sr2+Lr27</i>	<i>T.aestivum</i>		3BS
<i>Yr31</i>	<i>T.aestivum</i>		2BS
<i>Yr32</i>	<i>T.aestivum</i>		2BS
<i>Yr35+Lr53</i>	<i>T.turgidum</i> var. <i>Dicoccoides</i>		6BS
<i>Yr37+Lr54</i>	<i>Ae.kotschyi</i>		2DL
<i>Yr38+Lr56</i>	<i>Ae.sharonensis</i>		6A
<i>Yr40+Lr57</i>	<i>Ae.geneculata</i>		T5DL.5DS-5M ^g S(0.95),
<i>Yr42+Lr62</i>	<i>Ae.neglecta</i>		T6AS-6AL
<i>Yr48</i>	<i>Ae.tauchii</i>		5AL
<i>YrH52*+Yr15</i>	<i>T.dicoccoides</i> <i>Secale cereale</i> <i>Secale cereale</i> <i>Secale cereale</i>	<i>Yr2</i> <i>Yr3</i> <i>YrBl</i>	1BS 2RL 6R 6R

In the Indian context, several ASR(All Stage Resistance) genes such as *Yr5*, *Yr10*, *Yr15*, *Yr24/Yr26*, *Yr32*, and *YrSp* remain effective against the most prevalent Pst pathotypes, whereas many widely deployed genes including *Yr2*, *Yr9*, *Yr17*, and *Yr18* have lost effectiveness due to

pathogen evolution (Singh et al., 2015; Sharma et al., 2021). Among these, *Yr5*, *Yr10* and *Yr15* are particularly valuable as they continue to confer high levels of resistance across diverse environments and against multiple pathotypes, both in India and globally (Zeng et al., 2015; Wang et

al., 2019). APR genes such as *Yr18* (linked with *Lr34*), *Yr29* (*Lr46*), and *Yr46* contribute to slow-rusting resistance and are used in combination with ASR genes to enhance durability (Reynolds et al., 2009).

In India, the current breeding strategy emphasizes pyramiding of multiple resistance genes with diverse modes of action using marker-assisted selection

(MAS), supported by genome-wide association studies (GWAS) and QTL mapping to identify novel resistance sources from Indian germplasm, landraces, and exotic donors (Maccaferri et al., 2015; Wu et al., 2020). Despite these systematic efforts, frequent breakdown of resistance in released varieties highlights gaps in resistance gene diversity and incomplete knowledge of the resistance gene composition of Indian wheat cultivars.

Table 2 Donor parents in the back-cross programme (*Triticum aestivum*) taken at IARI RS Wellington

S.No.	Stock	Gene(s)	Reaction to			
			Stem rust	Leaf rust	Stripe rust	Powdery mildew
1.	WH 542	<i>Yr9 Lr26 Sr31 Pm8</i>	10R MR	80S	F	3
2.	Moro, WH 542+ <i>Yr10</i> (BGlm)	<i>Yr 10</i>	F	F	F	0-1
3.	<i>T.dicoccoides</i> G-25	<i>Yr 15</i>	F	F	F	0-1
4.	Thatcher*8/VPM 1, RL 6081	<i>Yr17 Lr37 Sr38</i>	20R MR MS	F	15MS	4
5.	EC 463655	<i>Yr 17</i>	F	90S	F	4

Although numerous *Yr* genes and QTLs for stripe rust resistance have been identified, the rapid evolution of *Puccinia striiformis* f. sp. *tritici* continues to threaten the durability of resistance in Indian wheat varieties. In their breeding program, the authors have primarily utilized a few highly effective genes,

incorporating *Yr10* and *Yr15* in the background of nearly 20 hexaploid wheat varieties, often in combination with *Lr19*, *Lr45*, *Lr47*, *Lr57* and other resistance genes, to develop multiple rust resistance lines with enhanced and durable resistance through gene pyramiding.

Table 3 Effective Rust resistance genes Used in the Back cross Programme at IARI, Wellington

S.No.	Gene	Source	Reference stocks used (RIL's)	Chromosomal location
1.	<i>Yr9+Lr26+Sr31+Pm8</i>	<i>Secale cereale</i> (Petkus rye)	WH 542 (Bacanora)	1BL1RS
2.	<i>Yr10</i>	<i>Triticum aestivum/T.spelta</i>	Moro, Yr10+WH 542	1BS
3.	<i>Yr15</i>	<i>T.dicoccoides</i>	<i>T.dicoccoides</i> G-25 V763-2312	1BL
4.	<i>Yr16</i>	Capelle-Desprez	Capelle-Desprez	2DS
5.	<i>Yr17+ Lr37+Sr38</i>	<i>Ae.ventricosa</i>	Thatcher*8/VPM 1,RL 6081	2AS
6.	<i>Yr18+Lr34+BDVI+Pm 38+ Sr resistance/Ltn</i>	<i>T.aestivum</i> Terenizo	RL 6058	7DS
7.	<i>Yr30+Sr2 +Lr27+ (Pseudo Black Chaff)</i>	<i>T.aestivum</i>	Maden	3BS
8.	<i>Yr35+Lr53</i>	<i>T.turgidum-T.dicoccoides</i>		6BS
9.	<i>Yr37+Lr54</i>	<i>Aegilops kotschy</i>		2DL.
10.	<i>Yr38+Lr56</i>	<i>Aegilops sharonensis</i>		6A
11.	<i>Yr40+Lr57</i>	<i>Ae.geniculata</i>		T5DL.5DS-5MgS(0.95),
12.	<i>Yr42+Lr62</i>	<i>Ae. neglecta</i>		

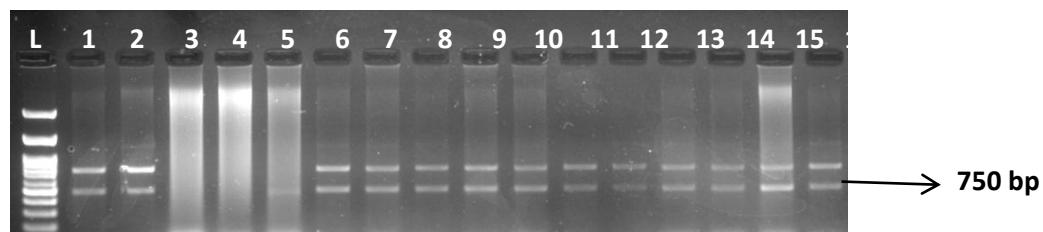
Yr5

Yr5 is a highly effective seedling (all-stage) resistance gene originally derived from *Triticum spelta* var. *album* and located on chromosome **2BL**. It confers strong, race-specific resistance to stripe rust and has remained effective against a wide range of *Puccinia striiformis* f. sp. *tritici* (Pst) races globally, including in China, the USA, and parts of Europe (Chen, 2005; Zeng et al., 2015). In India, *Yr5* continues to be effective against all major prevailing pathotypes and is considered one of the most reliable ASR genes currently available (Singh et al., 2015; Sharma et al., 2021). However, virulence to *Yr5* has been reported in

limited regions outside India (e.g., the TAS-6 race, China), emphasizing the need for pyramiding with other genes to ensure durability (Zhang et al., 2020).

Yr9

Yr9 was introgressed into wheat from rye (*Secale cereale*) as part of the 1BL·1RS translocation. It is located on chromosome **1BL** and was widely deployed during the Green Revolution due to its strong seedling resistance (Chen, 2005). However, *Yr9* has been rendered ineffective globally following the emergence of virulent Pst races, since the 1990s (Line, 2002). In India, *Yr9* is completely susceptible to current stripe rust pathotypes(78S84 & other pathotypes


110S119, 238S119, 110S84) and is no longer recommended for resistance breeding (Singh et al., 2015). Its widespread breakdown highlights the risks associated with extensive deployment of single major resistance genes.

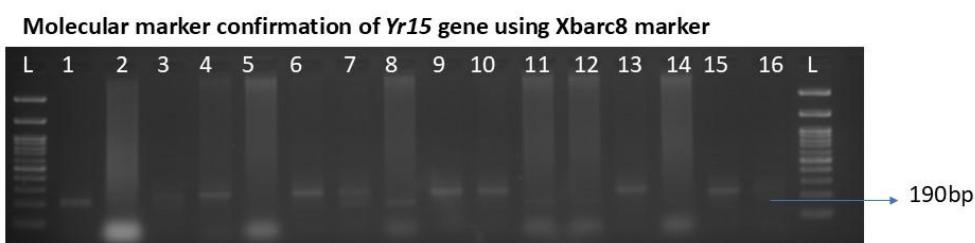
Yr10

Yr10 is a seedling resistance gene derived from bread/Spelt wheat and mapped to chromosome **1BS**. It provides high levels of race-specific resistance at early growth stages and has been widely deployed in breeding programs (Chen, 2005). Globally, *Yr10* remains effective against several *Pst* races but has been overcome in some regions due to pathogen evolution (Wang et al., 2019). In India, *Yr10* is still effective against most prevalent stripe rust pathotypes and is frequently used in

combination with other resistance genes (Singh et al., 2015). The authors successfully introgressed the stripe rust resistance gene *Yr10* into the genetic background of recently released bread wheat varieties, including HD 3086, HD 3090, HD 3059, and WH 1124, which are specifically adapted to the North Western Plains Zone (NWPZ) of India, where stripe rust poses a major threat to wheat production. In addition, *Yr10* was pyramided with other leaf and stem rust resistance genes to develop multiple-rust-resistant genetic stocks. A total of approximately 65 breeding lines carrying *Yr10* in combination with *Lr19+, Lr45, Lr47, and Lr57* were developed, providing valuable resources for enhancing durable rust resistance in Indian wheat breeding programs.

Molecular Confirmation of *Yr10* gene using *E1* marker

L:100bp ladder, Lane 1:MORO (positive control), , Lane 2:WH 542/Yr10(positive control), , 3- COW(W)-1(Negative control), 4-16: HD 3068//Yr10introgessed lines


The *E1* molecular marker is a tightly linked, PCR-based marker used for the detection of the stripe rust resistance gene *Yr10* in wheat. The *E1* marker employs primers that amplify a ~750 bp diagnostic fragment in genotypes carrying *Yr10*, while no amplification is observed in susceptible lines (William et al., 2003). Due to its clear banding pattern, strong linkage with *Yr10*, and ease of amplification, the *E1* marker has been

widely adopted in marker-assisted selection (MAS) and gene pyramiding strategies, including Indian wheat breeding programs targeting durable stripe rust resistance (Prasad et al., 2009; Randhawa et al., 2018).

Yr15

Yr15 is one of the most important stripe rust resistance genes, originating from wild emmer wheat (*Triticum dicoccoides*) and located on chromosome 1BS. It confers strong, broad-spectrum resistance across all growth stages and has remained effective against nearly all known *Pst* races worldwide (Klymiuk et al., 2022). In India, *Yr15* shows complete resistance to all currently prevalent pathotypes and is considered a cornerstone gene for stripe rust resistance breeding (Singh et al., 2015; Sharma et al., 2021). Its durability and broad effectiveness make it a preferred donor in Indian breeding programs,

especially for pyramiding with APR genes. The authors have developed nearly 30 backcross inbred lines (BILs) carrying the stripe rust resistance gene *Yr15*, either alone or in combination with stem rust (*Sr36*) and powdery mildew (*Pm6*) resistance genes, providing valuable multi-disease-resistant germplasm for wheat breeding programs. The presence of *Yr15* in these lines was confirmed using the *Xbarc8* molecular marker, which amplifies a 190 bp fragment in resistant genotypes and a 230 bp fragment in susceptible genotypes, facilitating rapid and reliable selection in breeding populations (Lillemo et al., 2008).

L:100bp ladder, Lane 1: COW(W)-1(Negative control), Lane 2- 15: HD 3059//*Yr15* introgressed lines, Lane 16: *Yr15* Donor(positive control),

Yr17

Yr17 is another rye-derived resistance gene associated with the 2NS/2AS translocation from *Aegilops ventricosa*, located on chromosome 2AS. It is tightly linked to *Lr37* and *Sr38* genes. It provides seedling resistance and was widely used in European and Asian wheat cultivars (Chen, 2005). Globally, virulence to *Yr17* is now common, leading to loss of effectiveness in many regions (Zeng et al., 2015). In India, *Yr17* has become ineffective against most prevalent *Pst* pathotypes and is considered susceptible (Sharma et al., 2021). Its breakdown

emphasizes the need for diversification of resistance sources.

Yr18

Yr18 is an adult plant resistance (APR) gene located on chromosome 7DS and is pleiotropically associated with *Lr34* and *Pm38*. Unlike ASR genes, *Yr18* confers partial, race-nonspecific, slow-rusting resistance that is durable across environments (Reynolds et al., 2009). Globally, *Yr18* has shown long-term effectiveness, although its resistance level is moderate and insufficient alone (Sadras and Lawson, 2013). In India, *Yr18* contributes to durable resistance when

combined with effective ASR genes, but by itself it does not provide adequate protection under high disease pressure (Singh et al., 2015). The authors developed several backcross-derived lines using recurrent parents that already possessed adult plant resistance genes. Notably, cultivars such as HD 2967, HD 2733, HD 2189, PBW 343, and NIAW 34 carry the ***Lr34 + Yr18*** gene complex.

Yr24

Yr24 and *Yr26* are closely linked or allelic seedling resistance genes located on chromosome **1BL**, derived from common wheat. These genes have been widely deployed in Asian wheat breeding programs due to their strong race-specific resistance at early growth stages (Chen, 2005). Globally, virulence to *Yr24/Yr26* has been reported, particularly in China and neighbouring regions, reducing their effectiveness in some environments (Zeng et al., 2015; Wang et al., 2019). In contrast, in India, *Yr24/Yr26* remain effective against most prevalent Pst pathotypes and continue to be important components of resistance breeding programs, although their race-specific nature necessitates pyramiding with other genes for durability (Singh et al., 2015; Sharma et al., 2021).

Yr25

Yr25 is an alien introgression derived from *Thinopyrum ponticum* and mapped to chromosome **7DL**. It provides strong seedling resistance and has demonstrated broad effectiveness against diverse Pst races across environments (Chen, 2005; Li et al., 2020). Despite its effectiveness, the utilization of *Yr25* in breeding programs has been limited due to linkage drag and

associated agronomic penalties. In the Indian context, *Yr25* remains effective against stripe rust but is primarily exploited as a donor gene in pre-breeding and resistance introgression programs rather than in direct varietal release (Singh et al., 2015).

Yr29

Yr29 is another APR gene, closely linked with *Lr46*, and mapped to chromosome **1BL**. It provides partial, race-nonspecific resistance and contributes to slow rusting at the adult plant stage (William et al., 2006). Globally, *Yr29* has been shown to enhance resistance durability when pyramided with major genes (Foulkes et al., 2011). In Indian wheat, *Yr29* alone is insufficient for complete protection but plays an important supporting role in resistance gene combinations deployed through ICAR breeding programs (Sharma et al., 2021). Several recurrent parents used in the backcross program carried the adult plant resistance gene *Lr46*, which is genetically linked with *Yr29*. Cultivars such as HD 3086, WH 1105 are known sources of this gene complex. The inclusion of *Lr46* in the recurrent parent background was aimed at conferring slow-rusting, race-non-specific resistance, leading to reduced disease progression and enhanced durability of resistance against both leaf rust and stripe rust across environments.

Yr30

Yr30 is an adult plant resistance gene tightly linked to *Sr2*, located on chromosome **3BS**. It provides partial, race-nonspecific resistance and contributes to slow rusting. Globally, *Yr30* has shown moderate effectiveness and durability

when combined with other resistance genes (Reynolds et al., 2009). In India, *Yr30* is considered a supportive APR gene and is mainly effective as part of multi-gene pyramids rather than as a standalone source of resistance (Sharma et al., 2021). The adult plant resistance gene *Yr30* is frequently associated with *Sr2*, a linked stripe rust resistance gene that together form an important component of durable, race-non-specific resistance. Both older cultivars such as Sonalika, and Kalyansona, and several modern, high-yielding varieties including HD 2967, HD 3086 and PBW 343 are known to carry the *Sr2*–*Yr30* linkage. In the present backcrossing program, recurrent parents possessing this gene combination were deliberately selected to facilitate the introgression and accumulation of adult plant resistance against both stem rust and stripe rust. The *Sr2*–*Yr30* complex confers partial but stable resistance, often expressed at later growth stages, and contributes to the well-known “Sr2 complex,” which enhances durability and long-term effectiveness when pyramided with other APR genes such as *Lr34/Yr18*, *Lr46/Yr29*, and *Lr67/Yr46* across diverse agro-climatic conditions.

Yr35

Yr35 is a major seedling resistance gene introgressed from wild emmer wheat (*Triticum dicoccoides*) and mapped to chromosome **6BS**. It confers high levels of race-specific resistance and has shown effectiveness against a wide range of Pst races globally (Klymiuk et al., 2022; Li et al., 2020). In India, *Yr35* is considered effective against prevailing stripe rust pathotypes, although its deployment has been more limited compared to widely

used genes such as *Yr5* and *Yr15*. Nevertheless, *Yr35* is increasingly recognized as a valuable source of novel resistance for gene pyramiding strategies aimed at broadening the resistance base (Singh et al., 2015).

Yr40

Yr40 is a major stripe rust resistance gene linked with *Lr57*, introgressed from *Aegilops geniculata* and located on chromosome 4AL. Unlike typical adult plant resistance genes, *Yr40* confers a high level of race-specific resistance, particularly effective at seedling and early growth stages, though its effectiveness may vary with pathogen virulence. While *Yr40* alone may not provide durable protection under high disease pressure, it has shown moderate to stable effectiveness when deployed in combination with adult plant resistance genes, thereby contributing to enhanced resistance durability (Chen, 2005; Reynolds et al., 2009). In the Indian context, reliance on *Yr40* as a single gene is insufficient due to the prevalence of diverse and evolving rust races; however, its inclusion in gene pyramiding strategies, together with APR genes such as *Yr18*, *Yr29*, *Yr30*, and *Yr46*, is considered valuable for strengthening resistance and reducing the risk of resistance breakdown (Sharma et al., 2021).

Yr46

Yr46 is an APR gene located on chromosome **1BL** and is associated with *Lr67*. It confers partial, non-race-specific resistance to stripe rust and other foliar diseases (Herrera-Foessel et al., 2014). Globally, *Yr46* is valued for its durability and contribution to broad-spectrum

resistance. In India, *Yr46* is increasingly recognized as an important component of resistance pyramids, particularly in combination with strong ASR genes such as *Yr5* and *Yr15* (Singh et al., 2015). The authors employed recurrent parents harbouring the pleiotropic adult plant resistance gene *Lr67*, associated with *Yr46* in the backcrossing program. The strategic use of *Lr67* was intended to impart partial yet durable resistance, contributing to broad-spectrum protection against multiple rust pathogens and improving the long-term stability of resistance when combined with other APR genes.

Conclusion

However, the available evidence demonstrates that seedling (all-stage) resistance genes such as ***Yr10*** and ***Yr15*** continue to provide high and stable resistance to stripe rust under Indian conditions, whereas formerly widely deployed genes including ***Yr9*** and ***Yr17*** have become largely ineffective due to the emergence of virulent *Puccinia striiformis* f. sp. *Tritici* pathotypes (Singh et al., 2015; Zeng et al., 2015; Sharma et al., 2021). In contrast, adult plant resistance (APR) genes such as ***Yr18***, ***Yr29***, ***Yr30*** and ***Yr46*** confer partial, race-nonspecific resistance that enhances durability but is insufficient when deployed individually. Consequently, the pyramiding of effective ASR genes with complementary APR genes has emerged as a key strategy for achieving stable and long-lasting stripe rust resistance in Indian wheat breeding programs (Reynolds et al., 2009; Foulkes et al., 2011; Sharma et al., 2021).

Table 4: List of rust resistant lines developed carrying stripe rust resistance genes- *Yr9+*, *Yr10*, *Yr15*and *Yr17*

S.No.	PEDIGREE	Genes introgressed	HW Number assigned
<i>Lr24+Sr24, Sr31+Yr9</i>			
1.	HD 2402*2/Tr380-14//WH 542	<i>Lr24+Sr24, Sr31+Yr9</i>	HW 2075
2.	HD 2402*2/Tr380-14//WH 542	<i>Lr24+Sr24, Sr31+Yr9</i>	HW 2075-1
3.	PBW 226*2/Tr380-14//Sr31+	<i>Lr24+Sr24, Sr31+Yr9</i>	HW 2076
<i>Lr24+Sr24,Sr26,Sr31+,Sr36+,Yr15</i>			
4.	HW 3094*4//HW 2436-2	<i>Lr24+Sr24,Sr26,Sr31+Yr9,Sr36+,Yr15</i>	HW 4459
5.	HW 3094*4//HW 2436-2	<i>Lr24+Sr24,Sr26, Sr31+Yr9,Sr36+,Yr15</i>	HW 4459-1
6.	HW 3094*4//HW 2436-2	<i>Lr24+Sr24,Sr26, Sr31+Yr9,Sr36+,Yr15</i>	HW 4459-2
7.	HW 3094*4//HW 2436-2	<i>Lr24+Sr24,Sr26, Sr31+Yr9,Sr36+,Yr15</i>	HW 4459-3
<i>Lr19+Sr25,Sr36+Pm6,Yr10</i>			
8.	HD 2687*4/Wheatear//HW 4444	<i>Lr19+Sr25,Sr36+Pm6,Yr10</i>	HW 1933
9.	HD 2687*4/Wheatear//HW 4444	<i>Lr19+Sr25,Sr36+Pm6,Yr10</i>	HW 1933-1
10.	HD 2687*4/Wheatear//HW 4444	<i>Lr19+Sr25,Sr36+Pm6,Yr10</i>	HW 1933-2
11.	HD 2687*4/Wheatear//HW 4444	<i>Lr19+Sr25,Sr36+Pm6,Yr10</i>	HW 1933-3
12.	HD 2687*3/Wheatear//HW 4444	<i>Lr19+Sr25,Sr36+Pm6,Yr10</i>	HW 1933-4
13.	HD 2687*3/Wheatear//HW 4444	<i>Lr19+Sr25,Sr36+Pm6,Yr10</i>	HW 1933-5
14.	<i>Yr10*2/Wheatear//HW 4444</i>	<i>Lr19+Sr25,Sr36+Pm6,Yr10</i>	HW 1934
15.	HD 2967*3/Wheatear//HW 4444	<i>Lr19+Sr25,Sr36+Pm6,Yr10</i>	HW 1935
16.	HD 2967*3/Wheatear//HW 4444	<i>Lr19+Sr25,Sr36+Pm6,Yr10</i>	HW 1935-1
17.	DBW 39*3/Wheatear//HW 4444	<i>Lr19+Sr25,Sr36+Pm6,Yr10</i>	HW 1936
18.	<i>Yr10*2//Wheatear</i>	<i>Yr10,Lr19+Sr25</i>	HW 1931
19.	<i>Yr10*2//Wheatear</i>	<i>Yr10,Lr19+Sr25</i>	HW 1931-1
20.	<i>Yr10*2//Wheatear</i>	<i>Yr10,Lr19+Sr25</i>	HW 1931-2
21.	<i>Yr10*2//Wheatear</i>	<i>Yr10,Lr19+Sr25</i>	HW 1931-3
22.	<i>Yr10*2//Wheatear</i>	<i>Yr10,Lr19+Sr25</i>	HW 1931-4
23.	<i>Yr10*2//Wheatear</i>	<i>Yr10,Lr19+Sr25</i>	HW 1931-5
24.	<i>Yr10*2//Wheatear</i>	<i>Yr10,Lr19+Sr25</i>	HW 1931-6

25.	<i>Yr10*2//Wheatear</i>	<i>Yr10,Lr19+Sr25</i>	HW 1931-7
26.	<i>Yr10*2//Wheatear</i>	<i>Yr10,Lr19+Sr25</i>	HW 1931-8
27.	<i>Yr10*2//Wheatear</i>	<i>Yr10,Lr19+Sr25</i>	HW 1931-9
28.	<i>Yr10*2//Wheatear</i>	<i>Yr10,Lr19+Sr25</i>	HW 1931-10
29.	<i>Yr10*2//Wheatear</i>	<i>Yr10,Lr19+Sr25</i>	HW 1931-11

Lr19+Sr25,Yr10,Sr36+Pm6

30.	HD 2687*3/Wheatear//HW 4444	<i>Lr19+Sr25,Yr10,Sr36+Pm6</i>	HW 1933-6
31.	HD 2687*3/Wheatear//HW 4444	<i>Lr19+Sr25,Yr10,Sr36+Pm6</i>	HW 1933-7
32.	HD 2687*3/Wheatear//HW 4444	<i>Lr19+Sr25,Yr10,Sr36+Pm6</i>	HW 1933-8
33.	HD 3059* 4/ <i>Yr10</i> // HD 2687/ <i>WLr19</i> /HW 4444	<i>Lr19+Sr25,Yr10,Sr36+Pm6</i>	HW 1939
34.	HD 3059* 4/ <i>Yr10</i> // HD 2687/ <i>WLr19</i> /HW 4444	<i>Lr19+Sr25,Yr10,Sr36+Pm6</i>	HW 1939-1
35.	HD 3059* 4/ <i>Yr10</i> // HD 2687/ <i>WLr19</i> /HW 4444	<i>Lr19+Sr25,Yr10,Sr36+Pm6</i>	HW 1939-2
36.	HD 3086*4/ <i>Yr10</i> // HD 2687/ <i>WLr19,Sr36,Yr10</i>	<i>Lr19+Sr25,Yr10,Sr36+Pm6</i>	HW 1939-3
37.	<i>HD 3086*4/Yr10</i> // HD 2687/ <i>WLr19,Sr36, Yr10</i>	<i>Lr19+Sr25,Yr10,Sr36+Pm6</i>	HW 1939-4
38.	HUW 234*2/CLr19// <i>Yr10</i>	<i>Yr10</i>	HW 4444*
39.	HD 3086*3// <i>Yr10</i>	<i>Yr10</i>	HW6001
40.	HD 3059*3// <i>Yr10</i>	<i>Yr10</i>	HW 6002
41.	HD 3090*3// <i>Yr10</i>	<i>Yr10</i>	HW 6003
42.	WH 1124*3// <i>Yr10</i>	<i>Yr10</i>	HW 6004
43.	HD 3086*3// <i>Yr15</i>	<i>Yr15</i>	HW 6005
44.	HD 3059*3// <i>Yr15</i>	<i>Yr15</i>	HW 6006
45.	HD 3090*3// <i>Yr15</i>	<i>Yr15</i>	HW 6007

Lr19+Sr25,Sr36+Pm6,Sr31+Yr9,Yr10

46.	HD 2285*3/HW 3619/HW 4444//HW 5555	<i>Lr19+Sr25,Sr36+Pm6, Sr31+Yr9,Yr10</i>	HW 1943
47.	HD 2285*3/HW 3619/HW 4444//HW 5555	<i>Lr19+Sr25,Sr36+Pm6, Sr31+Yr9,Yr10</i>	HW 1943-1
48.	HD 2285*3/HW 3619/HW 4444//HW 5555	<i>Lr19+Sr25,Sr36+Pm6, Sr31+Yr9,Yr10</i>	HW 1943-2
49.	HD 2285*3/HW 3619/HW 4444//HW 5555	<i>Lr19+Sr25,Sr36+Pm6, Sr31+Yr9,Yr10</i>	HW 1943-3
50.	HD 2285*3/HW 3619/HW 4444//HW 5555	<i>Lr19+Sr25,Sr36+Pm6, Sr31+Yr9,Yr10</i>	HW 1943-4
51.	HD 2285*3/HW 3619/HW 4444//HW 5555	<i>Lr19+Sr25,Sr36+Pm6, Sr31+Yr9,Yr10</i>	HW 1943-5

52.	HD 2285*3/HW 3619/HW 4444//HW 5555	<i>Lr19+Sr25, Sr36+Pm6, Sr31+Yr9, Yr10</i>	HW 1943-6
<i>Yr15, Lr19/Sr25, Sr36/Pm6</i>			
53.	<i>Yr15*2/Wheatear//COOK</i>	<i>Yr15, Lr19/Sr25, Sr36/Pm6</i>	HW 1944
54.	<i>Yr15*2/Wheatear//COOK</i>	<i>Yr15, Lr19/Sr25, Sr36/Pm6</i>	HW 1944-1
55.	<i>Yr15*2/Wheatear//COOK</i>	<i>Yr15, Lr19/Sr25, Sr36/Pm6</i>	HW 1944-2
56.	<i>Yr15*2/Wheatear//COOK</i>	<i>Yr15, Lr19/Sr25, Sr36/Pm6</i>	HW 1944-3
57.	<i>Yr15*2/Wheatear//COOK</i>	<i>Yr15, Lr19/Sr25, Sr36/Pm6</i>	HW 1944-4
58.	HD 3086*4/ <i>Yr15//Lr19, Sr36, Pm6</i>	<i>Yr15, Lr19/Sr25, Sr36/Pm6</i>	HW 1945
59.	HD 3086*4/ <i>Yr15//Lr19, Sr36, Pm6</i>	<i>Yr15, Lr19/Sr25, Sr36/Pm6</i>	HW 1945-1
60.	HD 3086*4/ <i>Yr15//Lr19, Sr36, Pm6</i>	<i>Yr15, Lr19/Sr25, Sr36/Pm6</i>	HW 1945-2
61.	HD 3086*4/ <i>Yr15//Lr19, Sr36, Pm6</i>	<i>Yr15, Lr19/Sr25, Sr36/Pm6</i>	HW 1945-3
62.	HD 3086*4/ <i>Yr15//Lr19, Sr36, Pm6</i>	<i>Yr15, Lr19/Sr25, Sr36/Pm6</i>	HW 1945-4
63.	HD 3086*4/ <i>Yr15//Lr19, Sr36, Pm6</i>	<i>Yr15, Lr19/Sr25, Sr36/Pm6</i>	HW 1945-5
64.	HD 3086*4/ <i>Yr15//Lr19, Sr36, Pm6</i>	<i>Yr15, Lr19/Sr25, Sr36/Pm6</i>	HW 1945-6
<i>Lr37+Yr17</i>			
65.	HD 2285*2// RL 6081	<i>Lr37+Yr17</i>	HW 4022
66.	HD 2687*2//RL 6081 (VPML)	<i>Lr37+Yr17</i>	HW 4033
67.	LOK-1*3/VPML	<i>Lr37+Yr17</i>	HW 4026
68.	LOK-1*3/VPML	<i>Lr37+Yr17</i>	HW 4026-1
69.	PBN 51*2//RL 6081	<i>Lr37+Yr17</i>	HW 4035
70.	PBW 226*2//RL 6081	<i>Lr37+Yr17</i>	HW 4028
71.	SONALIKA*2//RL 6081	<i>Lr37+Yr17</i>	HW 4029
72.	WH 147*2// VPML	<i>Lr37+Yr17</i>	HW 4030
73.	WH 542*2//RL 6081	<i>Lr37+Yr17</i>	HW 4031
74.	PBW 343*3//HW 4031	<i>Lr37+Yr17</i>	HW 4038
75.	DBW 39*3//HW 4031	<i>Lr37+Yr17</i>	HW 4039
76.	HD 2733*3//HW 4031	<i>Lr37+Yr17</i>	HW 4040
77.	HW 2045*3//HW 4031	<i>Lr37+Yr17</i>	HW 4041
78.	HD 2967*3//HW 4031	<i>Lr37+Yr17</i>	HW 4042

<i>Lr37+, Sr31+</i>			
79.	PBW 343*4//HD 2733/Lr37	<i>Lr37+Yr17, Sr31+Yr9+</i>	HW 4067
80.	PBW 343*4//HD 2733/Lr37	<i>Lr37+Yr17, Sr31+Yr9+</i>	HW 4067-1
<i>Lr37+ Sr31+, Sr24+Lr24, Sr36+Pm6, Yr10</i>			
81.	DBW 39*3/WH 542/Lr37//HW 2436-4	<i>Lr37+Yr17, Sr31+Yr9+, Sr24+Lr24, Sr36+Pm6, Yr10</i>	HW 4068
82.	DBW 39*3/WH 542/Lr37//HW 2436-4	<i>Lr37+Yr17, Sr31+Yr9+, Sr24+Lr24, Sr36+Pm6, Yr10</i>	HW 4068-1
83.	DBW 39*3/WH 542/Lr37//HW 2436-4	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr0</i>	HW 4068-2
84.	HD 2733*2/WH 542/Lr37//HD 2733/Sr36	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr0</i>	HW 4069
85.	HD 2733*2/WH 542/Lr37//HD 2733/Sr36	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr10</i>	HW 4069-1
86.	HD 2733*2/WH 542/Lr37//HD 2733/Sr36	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr10</i>	HW 4069-2
87.	HW 2045*4/PBW 226/Lr37// HW 2436-2	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr10</i>	HW 4070
88.	HW 2045*4/PBW 226/Lr37// HW 2436-2	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr10</i>	HW 4070-1
89.	HW 2045*4/PBW 226/Lr37// HW 2436-2	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr10</i>	HW 4070-2
90.	HW 2045*4/PBW 226/Lr37// HW 2436-4	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr10</i>	HW 4071
91.	HW 2045*4/PBW 226/Lr37// HW 2436-4	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr10</i>	HW 4071-1
92.	HW 2045*4/PBW 226/Lr37// HW 2436-4	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr10</i>	HW 4071-2
93.	PBW 343*4//HD 2733/Lr37//HW 2436-4	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr10</i>	HW 4072
94.	PBW 343*4//HD 2733/Lr37//HW 2436-4	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr10</i>	HW 4072-1
95.	PBW 343*4//HD 2733/Lr37//HW 2436-4	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr10</i>	HW 4072-2
96.	PBW 343*4//HD 2733/Lr37//HW 2436-4	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr10</i>	HW 4072-3
97.	HD 2967*4/WH 542/Lr37//HW 2436-4	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr10</i>	HW 4073
98.	HD 2967*4/WH 542/Lr37//HW 2436-4	<i>Lr37+Yr17, Sr31+Yr9+, Sr24/Lr24, Sr36/Pm6, Yr10</i>	HW 4073-1
99.	HD 2967*4/WH 542/Lr37//HW 2436-4	<i>Lr37+Yr17, Sr31+Yr9+, Sr24+Lr24, Sr36+Pm6, Yr10</i>	HW 4073-2
<i>Lr45, Sr36+Pm6, Yr10</i>			
100.	HD 2329*/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3641
101.	HD 2329*/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3641-1
102.	HD 2329*/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3641-2
103.	HD 2329*/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3641-3

104.	HD2402*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3642
105.	HD2402*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3642-1
106.	HD2402*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3642-2
107.	HD 2687*3/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3643
108.	HD 2877*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3645
109.	HD 2877*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3645-1
110.	KALYANSONA*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3652
111.	KALYANSONA*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3652-1
112.	KALYANSONA*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3652-2
113.	KALYANSONA*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3652-3
114.	LOK-1*3/RL 6144//HW 4444	<i>Lr45, Yr10, Sr36+Pm6</i>	HW 3654
115.	LOK-1*3/RL 6144//HW 4444	<i>Lr45, Yr10, Sr36+Pm6</i>	HW 3654-1
116.	MACS 2496*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3655
117.	MACS 2496*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3655-1
118.	NIAW 34*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3657
119.	PBN 51*3/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3658
120.	PBN 51*3/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3658-1
121.	PBN 51*3/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3658-2
122.	PBN 51*3/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3658-3
123.	PBW 226*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3659
124.	PBW 502*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3661
125.	PBW 343*3/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3660
126.	PBW 343*3/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3661
127.	PBW 343*3/RL 6144//COOK//Yr10	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3662
128.	RAJ 3077*3/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3662
129.	UP 2338*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3663
130.	HD 2967*2/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3702
131.	HD 2877*3/RL 6144//HW 4444	<i>Lr45, Sr36+Pm6, Yr10</i>	HW 3645

<i>Lr45,Yr10</i>			
132.	LOK-1*2/RL6144//Yr10	<i>Lr45,Yr10</i>	HW 3705
133.	LOK-1*2/RL6144//Yr10	<i>Lr45,Yr10</i>	HW 3705-1
134.	PBW 343*2/Pavon7S 3//HW 4444	<i>Lr47,Sr36+Pm6,Yr10</i>	HW 4735
135.	PBW 343*2/Pavon7S 3//HW 4444	<i>Lr47,Sr36+Pm6,Yr10</i>	HW 4735-1
136.	HD 2967*2/Pavon 7S 3//HW 4444	<i>Lr47,Sr36+Pm6,Yr10</i>	HW 4736
137.	HD 3086*4//Yr10, Lr47, Sr36	<i>Lr47,Sr36+Pm6,Yr10</i>	HW 4737
<i>Lr47,Yr10</i>			
138.	HD 3090*4/Yr10// HD 2687/Lr47	<i>Lr47,Yr10</i>	HW 4738
139.	HD 3086*4//Yr10, Lr47	<i>Lr47,Yr10</i>	HW 4739
140.	HD 3086*4//Yr10, Lr47	<i>Lr47,Yr10</i>	HW 4739-1
<i>Lr47,Yr15,Sr36+Pm6</i>			
141.	WH 1124*4/Yr15//HD 2687/Lr47, Sr 36	<i>Lr47,Yr15,Sr36+Pm6</i>	HW 4740
142.	WH 1124*4/Yr15//HD 2687/Lr47, Sr 36	<i>Lr47,Yr15,Sr36+Pm6</i>	HW 4740-1
143.	WH 1124*4/Yr15//HD 2687/Lr47, Sr 36	<i>Lr47,Yr15,Sr36+Pm6</i>	HW 4740-2
144.	WH 1124*4/Yr15//HD 2687/Lr47, Sr 36	<i>Lr47,Yr15,Sr36+Pm6</i>	HW 4741
145.	WH 1124*4/Yr15//HD 2687/Lr47, Sr 36	<i>Lr47,Yr15,Sr36+Pm6</i>	HW 4741-1
146.	WH 1124*4/Yr15//HD 2687/Lr47, Sr 36	<i>Lr47,Yr15,Sr36+Pm6</i>	HW 4741-2
<i>Lr57/Yr40,Sr36+Pm6,Yr10</i>			
147.	HD 3086*4/Lr57//HW 2436-2	<i>Lr57/Yr40,Sr36+Pm6,Yr10</i>	HW 5734
148.	HD 3086*4/Lr57//HW 2436-2	<i>Lr57/Yr40,Sr36+Pm6,Yr10</i>	HW 5734-1
149.	HD 3086*4/Lr57//HW 2436-2	<i>Lr57/Yr40,Sr36+Pm6,Yr10</i>	HW 5734-2
150.	HD 3086*4/Lr57//HW 2436-2	<i>Lr57/Yr40,Sr36+Pm6,Yr10</i>	HW 5734-3
151.	HD 3086*4/Lr57//HW 2436-2	<i>Lr57/Yr40,Sr36+Pm6,Yr10</i>	HW 5734 -4
152.	HD 3086*4/Lr57//HW 2436-2	<i>Lr57/Yr40,Sr36+Pm6,Yr10</i>	HW 5734 -5
153.	HD 3086*4/Lr57//HW 2436-2	<i>Lr57/Yr40,Sr36+Pm6,Yr10</i>	HW 5734-6
154.	HD 3086*4/Lr57//HW 2436-2	<i>Lr57/Yr40,Sr36+Pm6,Yr10</i>	HW 5734 -7
155.	HD 2687*4/Lr57//HW 2436-4	<i>Lr57/Yr40,Sr36+Pm6,Yr10</i>	HW 5735
156.	HD 2687*4/Lr57//HW 2436-4	<i>Lr57/Yr40,Sr36+Pm6,Yr10</i>	HW 5735 -1

157.	HD 2687*4/Lr57//HW 2436-4	<i>Lr57/Yr40, Sr36+Pm6, Yr10</i>	HW 5735 -2
158.	HD 2687*4/Lr57//HW 2436-4	<i>Lr57/Yr40, Sr36+Pm6, Yr10</i>	HW 5735 -3
159.	HD 2967*3/Lr57//HW 2436-4	<i>Lr57/Yr40, Sr36+Pm6, Yr10</i>	HW 5736
160.	HD 2967*3/Lr57//HW 2436-4	<i>Lr57/Yr40, Sr36+Pm6, Yr10</i>	HW 5736-1
161.	HD 2967*3/Lr57//HW 2436-4	<i>Lr57/Yr40, Sr36+Pm6, Yr10</i>	HW 5736-2

Sr36+Pm6, Yr15

162.	MACS 2496*2/COOK//Yr15	<i>Sr36+Pm6, Yr15</i>	HW 4455
163.	NI 5439*2/COOK//Yr15	<i>Sr36+Pm6, Yr15</i>	HW 4456
164.	NI 5439*2/COOK//Yr15	<i>Sr36+Pm6, Yr15</i>	HW 4456-1
165.	NI 5439*2/COOK//Yr15	<i>Sr36+Pm6, Yr15</i>	HW 4456-2
166.	NI 5439*2/COOK//Yr15	<i>Sr36+Pm6, Yr15</i>	HW 4456-3
167.	<i>Yr15*2//COOK</i>	<i>Sr36+Pm6, Yr15</i>	HW 3634
168.	<i>Yr15*2//COOK</i>	<i>Sr36+Pm6, Yr15</i>	HW 3634-1
169.	<i>Yr15*2//COOK</i>	<i>Sr36+Pm6, Yr15</i>	HW 3634-2
170.	<i>Yr15*2//COOK</i>	<i>Sr36+Pm6, Yr15</i>	HW 3634-3

Sr36+Pm6, Yr10

171.	HD 2967*2/Yr10//HW 4444	<i>Sr36+Pm6, Yr10</i>	HW 4457
172.	HD 2967*2/Yr10//HW 4444	<i>Sr36+Pm6, Yr10</i>	HW 4457-1

Yr15, Yr10, Sr36/Pm6

173.	HD 3086*4/Yr15//HW 2436-4	<i>Yr15, Yr10, Sr36/Pm6</i>	HW 4458
174.	HD 3086*4/Yr15//HW 2436-4	<i>Yr15, Yr10, Sr36/Pm6</i>	HW 4458-1

***HW4444 used as donor**

DUS Characterization of Indian Released Varieties Using Agro-Morphological Descriptors

Shajitha P, Sivasamy M*, Nisha.R, Jayaprakash P, V.K. Vikas, Vijaishree S, Balaji V, Jenitha K & C. Arun Kumar

ICAR-Indian Agricultural Research Institute Regional Station, Wellington, Tamil Nadu -643 231, India

***Corresponding author:**
iariwheatsiva@gmail.com

Abstract

This study evaluated the extent of agromorphological diversity among released Indian wheat varieties and elucidated phenotypic relationships using multivariate graphical analyses. A total of 428 wheat cultivars released between 1961 and 2018 for six major agro-climatic wheat-growing regions of India were characterized for Distinctness, Uniformity, and Stability (DUS) traits using 35 standardized descriptors encompassing seedling, vegetative, stem and reproductive stages. Considerable phenotypic(qualitative) variation was observed across most traits, confirming the effectiveness of morphological descriptors as the primary basis for DUS testing and varietal discrimination worldwide (UPOV, 2019). Traits such as waxiness of plant parts, plant height, and growth habit emerged as major contributors to phenotypic differentiation and genetic diversity. The comprehensive dataset generated through this study provides a robust reference for varietal identification and protection under the PPV&FRA framework and offers valuable insights for agro-morphological evaluation, core collection development, and the effective

utilization of Indian wheat germplasm in breeding programmes.

Keywords: DUS characterization, morphological descriptors, Indian released varieties, PPV&FRA, varietal identification

Introduction

India remains the world's second-largest wheat producer and consumer, trailing only China, thanks to steady gains in yield and cultivation area. Wheat, as a nutritional powerhouse, emerged as a key driver of this transformation, ensuring caloric adequacy while addressing broader nutritional needs across the region (Kashyap, 2024). According to the Second Advance Estimates for 2024–25 released by the Ministry of Agriculture and Farmers' Welfare, the country's wheat output is projected to reach around 115 million metric tons, marking a new record and an increase over the previous year's production levels. The government is also targeting higher output for the 2025–26 Rabi season, with aims of around 119 million metric tons to meet rising demand. Despite these achievements, enhancing and sustaining productivity is vital to meet the nutritional needs of India's burgeoning population. By 2050, the country's wheat requirement is expected to exceed 140 million metric tons to feed an estimated 1.64 billion people. (Bhardwaj et al., 2019; Mottaleb et al., 2023).

Wheat (*Triticum aestivum* L.) is a principal staple crop in India and a critical component of national food and nutritional security. India ranks second globally in wheat production, supported by sustained varietal improvement and expansion across diverse agro-climatic regions. The country's wheat cultivation spans five major agro-climatic zones namely the North Western Plains Zone, North Eastern Plains Zone, Central Zone, Peninsular Zone, and Northern Hills Zone each characterized by distinct temperature regimes abiotic and biotic stress pressures. These diverse environments have strongly influenced breeding objectives

and driven the development of region-specific wheat varieties with tailored adaptation (Bhardwaj et al., 2019; IIWBR, 2023).

The evolution of Indian wheat varieties can be broadly categorized into pre-Green Revolution, post-Green Revolution, and modern breeding phases. Prior to the Green Revolution, wheat cultivation relied largely on tall indigenous landraces and traditional cultivars, which possessed valuable adaptive traits but were limited by low yield potential and susceptibility to diseases and lodging. The introduction of semi-dwarf, high-yielding varieties during the Green Revolution period in the late 1960s marked a paradigm shift, leading to dramatic increase in productivity through improved plant architecture, fertilizer responsiveness and synchronized maturity. Subsequent post-Green Revolution breeding focused on yield stabilization, wide adaptability, and resistance to major diseases such as rusts, resulting in the release of a large number of improved varieties suited to different agro-ecological zones (Joshi et al., 2007; Singh et al., 2011).

In recent decades, the advent of molecular marker technologies has further strengthened Indian wheat improvement programs. Marker-assisted selection has enabled the precise introgression and pyramiding of genes governing disease resistance, quality traits and abiotic stress tolerance into elite genetic backgrounds. Comparative molecular studies have highlighted clear genetic differentiation between pre- and post-Green Revolution cultivars, while also emphasizing the need to maintain phenotypic and genetic diversity within modern breeding pools (Mottaleb et al., 2023; Sharma et al., 2021). Nevertheless, despite advances in genomics, morphological traits continue to serve as the primary and legally recognized basis for varietal identification and protection.

Distinctness, Uniformity, and Stability (DUS) characterization using standardized morphological descriptors remains

fundamental for the registration, protection, and maintenance of wheat varieties under national and international frameworks such as the PPV&FR Act and UPOV guidelines. Morphological descriptors are stable, visually assessable, and reflect the cumulative effects of selection across agro-climatic zones and breeding eras. Comprehensive DUS characterization of Indian released wheat varieties therefore provides critical insights into phenotypic diversity, facilitates effective varietal identification, and supports sustainable utilization of wheat genetic resources in future breeding programs.

Materials and Methods

Plant Material

The study comprised of 428 Indian released varieties, representing nearly six decades of varietal development (1961–2018) and released in last fifty years under AICW&BIP, were used to estimate the genetic variability (Table 1). Observations were recorded during 2021–23(winter & summer- 4 seasons at ICAR–Indian Agricultural Research Institute (IARI), Regional Station, Wellington, Tamil Nadu, India (11°22'47.5"N; 76°46'26.1"E; 1850 m AMSL) at appropriate growth stages as recommended for DUS testing. These varieties encompass a wide range of genetic backgrounds and adaptation to various wheat cultivating zones across India. Varieties were evaluated with 35 morphological descriptors covering seedling, vegetative, stem, and reproductive stages.

The descriptors and corresponding states of expression followed standard DUS guidelines prescribed by PPV&FRA and UPOV (PPV&FRA, 2007; UPOV, 2019). Each trait was scored using predefined numerical codes to ensure uniformity and reproducibility. Qualitative traits such as pigmentation, waxiness, hairiness and for presence/absence of awns were visually assessed, while quantitative traits such as plant height, leaf length, leaf breadth, peduncle length and

phenological traits were classified into discrete state categories, as practiced in earlier DUS characterization studies.

Results

The qualitative/quantitative attributes among 35 DUS descriptors and their respective states were scored as numeric values for 428 wheat varieties as given in Table 2. The consolidated DUS data (Table 2) reveal substantial agromorphological diversity among 428 Indian wheat varieties released over the past five decades, reflecting intensive selection under diverse agro-climatic conditions. Coleoptile anthocyanin pigmentation was largely absent (409 varieties), indicating limited use of this trait in varietal differentiation, whereas its presence in only 17 varieties suggests niche adaptation or specific genetic background. Growth habit in Indian wheat varieties was predominantly semi-erect (303) and erect (118), highlighting breeder preference for plant architectures that confer lodging resistance and suitability for high-input cultivation systems. Leaf attitude followed a similar trend, with semi-erect leaves (288) being most common, which is advantageous for optimal light interception and canopy aeration. Leaf hairiness was absent in the majority (379), while mimic traits showed considerable variation, suggesting their limited but specific utility in varietal identification. A striking observation was the dominance of early to very early heading (414 varieties combined) and maturity classes (418 varieties), underscoring strong selection for earliness to escape terminal heat stress prevalent in Indian wheat-growing regions and adapted to short winter conditions where as late maturing types were rare, reflecting reduced adaptation or preference under changing climatic scenarios. High levels of waxiness were recorded across multiple plant organs. Strong to very strong waxiness was most frequent in flag leaf (246), leaf sheath (397), peduncle (332), and ear (184). This widespread expression of waxy bloom

suggests intentional or indirect selection for traits associated with drought tolerance, reduced transpiration and improved performance under heat and moisture stress conditions. Correspondingly, waxy bloom presence on stems (400 varieties) further supports this adaptive significance. Most varieties possessed hollow stems (306), while semi-solid (77) and solid stems (43) were less frequent, indicating that solid stem traits—often associated with lodging resistance and pest tolerance—have been incorporated in a limited subset of varieties knowingly or unknowingly. Peduncle length was mainly medium (286), balancing assimilate transport efficiency. Peduncle shape and curvature exhibited wide variation, enhancing the discriminatory power of these traits in DUS characterization. Spike traits displayed pronounced diversity. Dense ears (203) were most common, likely reflecting selection for higher grain number per spike. Tapering ear shape predominated (274), followed by fusiform and strap types. Ear pubescence was largely absent (365), while awnedness showed extreme skewness towards awned types (424), confirming the dominance of awns in Indian wheat for their role in photosynthesis, stress adaptation and relatively less damage from wild animals and birds(at maturity). Variation in awn attitude and color further contributed to varietal distinctness. Glume pigmentation was absent in most varieties (366), whereas glume shoulder width and shape showed moderate variability, with medium width and sloping to round shoulders being most frequent. Beak shape was primarily straight (199) or moderately curved (185), indicating stabilizing selection for these traits. Almost similar distribution was observed for DUS descriptors across six wheat sowing regions of India with minor exception like waxiness on peduncle in varieties developed for southern hilly regions of India.

Other Associated Traits Contributing to Durable Disease Resistance: Several other morphological and physiological traits

associated with durable rust resistance were also recorded among the evaluated varieties. The presence of pseudo-black chaff (PBC), a well-known morphological marker linked to the *Sr2* complex, was observed in several classical and modern cultivars such as Hope derivatives, Sonalika, Kalyansona, HD 2967, HD 3086, PBW 343, and DBW 17, indicating the deployment of adult plant stem rust resistance. Similarly, leaf tip necrosis (Ltn)—a phenotypic marker closely associated with the pleiotropic adult plant resistance genes *Lr34/Yr18*, *Lr46/Yr29*, and *Lr67/Yr46*—was recorded in varieties including HD 2967, HD 3086, PBW 343, DBW 71, MACS 6478, WH 1105, and HI 1500 (Amrita). These traits are indicative of slow-rusting, race-non-specific resistance mechanisms that reduce disease development and enhance resistance durability. The concurrent expression of PBC and Ltn, particularly in genotypes carrying multiple APR genes, underscores their value as field-level indicators of durable, multi-disease resistance and supports their strategic use in resistance breeding and gene pyramiding programs.

Discussion

The consolidated DUS characterization of 428 Indian wheat varieties revealed substantial agro-morphological diversity, reflecting decades of targeted breeding for wide agro-climatic adaptation across Indian wheat-growing regions. The predominance of semi-erect growth habit, green to waxy green plant colour, and semi-erect leaf attitude suggests strong selection for plant types that balance lodging resistance with efficient light interception, traits widely associated with improved yield stability in modern wheat cultivars (Singh et al., 2011; Reynolds et al., 2012). A high frequency of waxy bloom on flag leaf, leaf sheath, ear, and peduncle was observed, with strong to very strong waxiness dominating most categories. Epicuticular wax is a well-documented adaptive trait conferring

tolerance to heat and drought stress by reducing transpiration losses and canopy temperature, particularly under terminal heat stress conditions prevalent in Indian wheat environments (Mondal et al., 2015; Sharma et al., 2021). The widespread presence of this trait highlights its importance in Indian breeding programs targeting climate resilience. Phenological traits showed a clear skew towards very early to early heading and maturity, indicating deliberate selection for short-duration varieties to escape terminal heat stress and fit within multiple cropping systems (Joshi et al., 2007; Kumar et al., 2019). Such adaptation has been central to sustaining wheat productivity in the Indo-Gangetic Plains, where rising temperatures increasingly threaten grain filling duration. Leaf morphological traits such as leaf length, breadth, curliness, and hairiness exhibited marked variation, suggesting their potential utility in varietal identification and distinctness testing. Leaf pubescence, though less frequent, is reported to contribute to abiotic stress tolerance and pest deterrence, indicating its selective retention in specific breeding backgrounds (Blum, 2011). Stem-related traits revealed a predominance of hollow stems, while a smaller proportion of varieties exhibited semi-solid and solid stems. Stem solidness is a valuable trait linked to resistance against lodging and stem-boring insects such as wheat stem sawfly, as well as improved assimilate storage under stress conditions (Cook et al., 2019). The limited frequency of solid stems suggests scope for further introgression of this trait into elite backgrounds. Spike architecture traits, including ear density, shape, awnedness, awn attitude, and ear curvature, showed wide variability. The overwhelming presence of awned spikes reflects their recognized role in enhancing photosynthetic contribution to grain filling, particularly under water-limited and heat-stressed environments (Tambussi et al., 2007). Variations in awn colour, ear shape,

and density further contribute to phenotypic distinctness and reflect diverse genetic origins and selection histories. Glume-related traits such as pigmentation, shoulder width and shape, and beak shape also exhibited considerable diversity. These characters are highly stable across environments and are therefore considered reliable descriptors for varietal identification and protection under DUS testing systems (UPOV, 2012; PPV&FRA, 2007).

Overall, the wide range of agromorphological variation captured in this study underscores the rich phenotypic diversity present in Indian wheat germplasm. Such diversity not only facilitates effective DUS testing but also provides a valuable resource for breeders aiming to enhance stress resilience, adaptability, and yield stability under changing climatic conditions.

Figure 1. Expression of Pseudo black chaff linked to the APR stem rust resistance gene *Sr2+* on the glume and internodes

Figure 2. Variation in the expression of leaf tip necrosis (Ltn) associated with APR genes *Lr34/Yr18*, *Lr46/Yr29*, and *Lr67/Yr46* in wheat

Table 1. Morphological characteristics used to evaluate the 428 Indian released varieties (1961-2018)

Character code	DUS Characteristics	States of Expression
1	Coleoptile anthocyanin (CP)	1 Absent, 9 Present
2	Growth habit (GH)	1 Erect, 3 Semi-erect, 5 Intermediate, 9 Spreading
3	Plant colour (PC)	1 Erect, 3 Semi-erect, 5 Intermediate, 9 Spreading
4	Leaf attitude (LA)	1 Erect, 3 Semi-erect, 5 Droopy
5	Leaf hairiness (LH)	1 Absent, 9 Present
6	Mimic (MM)	1 Absent, 9 Present
7	Leaf length (LL)	1 Short < 20 cm, 5 Medium 20–30 cm, 9 Long > 30 cm
8	Leaf breadth (LB)	1 Narrow < 1.5 cm, 5 Medium 1.5–2.0 cm, 9 Broad > 2.0 cm
9	Curly at (CA)	3 At middle, 5 At base
10	Average days to heading (ADH)	1 Very early, 3 Early, 5 Medium, 7 Late, 9 Very late
11	Average days to maturity (DM)	1 Very early < 110 days, 3 Early, 5 Medium, 7 Late, 9 Very late
12	Flag leaf waxiness (FLW)	1 Absent, 3 Weak, 5 Medium, 7 Strong, 9 Very strong
13	Leaf sheath waxiness (LSW)	1 Absent, 3 Weak, 5 Medium, 7 Strong, 9 Very strong
14	Ear waxiness (EW)	1 Absent, 3 Weak, 5 Medium, 7 Strong, 9 Very strong
15	Peduncle waxiness (PW)	1 Absent, 3 Weak, 5 Medium, 7 Strong, 9 Very strong
16	Peduncle length (PL)	1 Short, 5 Medium, 9 Long
17	Auricle colour (AC)	1 Absent, 5 Medium, 9 Strong
18	Auricle hairiness (AH)	1 Absent, 5 Medium, 9 Strong
19	Stem anthocyanin (SA)	1 Absent, 9 Present
20	Waxy bloom (WB)	1 Absent, 9 Present
21	Stem hairiness (SH)	1 Absent, 9 Present
22	Stem solidness (SS)	1 Hollow, 3 Semi-solid, 5 Solid
23	Colour of nodes (CN)	1 Absent, 9 Present
24	Peduncle shape (PS)	1 Erect, 3 Semi-erect, 5 Recurved, 7 Semi-crooked, 9 Crooked neck
25	Ear density (ED)	1 Very lax, 3 Lax, 5 Medium, 7 Dense, 9 Very dense
26	Ear shape (ES)	1 Tapering, 2 Strap-shaped, 3 Oblong, 4 Clavate, 5 Fusiform
27	Ear pubescence (EP)	3 Absent, 5 Medium, 7 Very strong
28	Ear awnedness (EA)	1 Awns absent, 2 Awnletted, 3 Awned
29	Awn attitude (AA)	1 Appressed, 2 Semi-spreading, 3 Spreading
30	Awn colour (ACOL)	1 White, 2 Brown, 3 Dark brown, 4 Pink/Black
31	Ear curvature at maturity (CV)	3 Erect, 5 Semi-erect, 7 Droopy
32	Glume pigmentation (GP)	1 Absent, 9 Present
33	Lower glume shoulder width (LGSW)	1 Absent, 3 Narrow, 5 Medium, 7 Broad, 9 Very broad

Table 2 . Distribution of agro-morphological characters in Indian wheat varieties (indicated in numbers).

Agro-Morphological Character		Descriptor state and number of varieties in parenthesis				
		1	3	5	7	9
1	Coleoptile anthocyanin	Absent (409)	-	-	-	Present (17)
2	Growth habit	Erect (118)	Semi Erect (303)	Intermediate (4)	Semi spreading (0)	Spready (1)
3	Plant colour	Light Green (17)	Waxy green (144)	Green (176)	Dark Green (89)	
4	Leaf attitude	Erect (85)	Semi Erect (288)	Droopy (53)		
5	Leaf hairiness	Absent (379)				Present (47)
6	Mimic	Absent (253)				Present (173)
7	Leaf length	Short (190)	-	Medium (0)	-	Long (236)
8	Leaf breadth	Narrow (191)		Medium (0)		Broad (235)
9	curly at	Absent (66)	at Middle (289)	at base (71)		
10	Avg days to heading	Very early (238)	Early (176)	Medium (9)	Late (2)	Very late (1)
11	Avg days to maturity	Very early (317)	Early (101)	Medium (7)	Late (0)	Very late (1)
12	Flag leaf waxiness	Absent (40)	Weak (68)	Medium (72)	Strong (198)	V.strong (48)
13	Leaf sheath waxiness	Absent (2)	Weak (9)	Medium (18)	Strong (293)	V.strong (104)
14	Ear waxiness	Absent (21)	Weak (65)	Medium (156)	Strong (149)	V.strong (35)
15	Peduncle waxiness	Absent (10)	Weak (32)	Medium (52)	Strong (264)	V.strong (68)
16	Peduncle Length	Short (35)		Medium (286)		Long (105)
17	Auricle colour	Absent (304)		Medium (73)		Strong (49)
18	Auricle hair	Absent (128)		Medium (166)		Strong (132)
19	Stem Anthocyanin	Absent (28)				Present (398)
20	Waxy bloom	Absent (26)				Present (400)
21	Stem Hariness	Absent (403)				Present (23)
22	Stem solidness	Hollow (306)	Semisolid (77)	Solid (43)		
23	Colour of nodes	Absent (425)				Present (1)
24	Peduncle shape	Erect (108)	Semi Erect (138)	Recurved (123)	Semi crooked (4)	crooked Neck (53)
25	Ear Density	Very lax (3)	Lax (61)	Medium (154)	Dense (203)	Very dense (5)
26	Ear shape	Tapering (274)	Strap (48)	Oblong (1)	Clavate (42)	Fusiform (61)
27	Ear pubescence	Absent (365)		Medium (37)	V. strong (24)	

28	Ear awnedness	Awns absent (1) 0	Awnletted (2) 2	Awned (3) 424		
29	Awn attitude	Appressed (141)	Medium (78)	Spreading (207)		
30	Awn colour	White (264)	Brown (5)	Dark brown (26)	pink/black (131)	
31	Ear Curvature at maturity		Erect (182)	Semi erect (178)	Droopy (66)	
32	Glume pigmentation	Absent (366)				Present (60)
33	Lower glume shoulder width	Absent (87)	Narrow (131)	Medium (179)	Broad (29)	Very broad (0)
34	Lower glume shoulder shape	Sloping (183)	Round (119)	Straight (104)	Elevated (20)	strongly elevated (0)
35	Glume beak shape	Straight (1) 199	Mod.curved (2) 185	Strongly curved (3) 25	Geniculate (4) 16	
36	Grain Colour	Amber	Red			

References

Bhardwaj, S. C., Singh, G. P., Gangwar, O. P., Prasad, P., & Kumar, S. (2019). Status of wheat rust research and progress in rust management in India. *Indian Phytopathology*, 72(3), 379–395. <https://doi.org/10.1007/s42360-019-00163-4>

Cook, J. P., Wiersma, J. J., & Rasmusson, D. C. (2019). Solid stem expression and its role in wheat adaptation. *Crop Science*, 59, 1–12.

Indian Institute of Wheat and Barley Research (IIWBR). (2023). Vision 2050. ICAR–Indian Institute of Wheat and Barley Research, Karnal, India.

Joshi, A. K., et al. (2007). Breeding wheat for adaptation to heat stress. *Euphytica*, 157, 35–52.

Joshi, A. K., Mishra, B., Chatrath, R., Ortiz Ferrara, G., & Singh, R. P. (2007). Wheat improvement in India: Present status, emerging challenges and future prospects. *Euphytica*, 157, 431–446.

<https://doi.org/10.1007/s10681-007-9385-7>

Kashyap D, Goswami K. The changing role of the poultry sector in the food and nutritional security of India. In: Food Security in a Developing World: Status, Challenges, and Opportunities. Cham, Switzerland: Springer Nature; 2024. pp. 153–171

Kumar, S., et al. (2019). Phenological adaptation of wheat to climate variability in India. *Field Crops Research*, 231, 144–153.

Mondal, S., et al. (2015). Contribution of leaf waxiness to heat tolerance in wheat. *Functional Plant Biology*, 42, 1–12.

Mottle, K. A., Singh, P. K., Sonder, K., Kruseman, G., & Tadesse, W. (2023). Genetic gains, varietal turnover, and future prospects of wheat production in South Asia. *Food Security*, 15, 147–163. <https://doi.org/10.1007/s12571-022-01305-9>

PPV&FR Authority. (2007). Guidelines for the conduct of test for distinctiveness, uniformity and stability on wheat (*Triticum aestivum* L.). Protection of Plant Varieties and Farmers' Rights Authority, Government of India, New Delhi.

PPV&FRA (2007). *Guidelines for the conduct of test for distinctiveness, uniformity and stability on wheat (Triticum aestivum L.)*. Government of India.

Reynolds, M., et al. (2012). Physiological breeding approaches for wheat improvement. *Crop Science*, 52, 1–18.

Sharma, D. K., et al. (2021). Morphological traits associated with heat tolerance in wheat. *Journal of Plant Physiology*, 258–259, 153–170.

Sharma, D. K., Singh, R., Rane, J., Gupta, V. K., Maratha, H. M., & Tiwari, R. (2021). Molecular breeding approaches for improving abiotic stress tolerance in wheat. *Journal of Cereal Science*, 100, 103230. <https://doi.org/10.1016/j.jcs.2021.103230>

Singh, R. P., et al. (2011). Wheat improvement and adaptation strategies. *Cereal Research Communications*, 39, 1–15.

Singh, R. P., Hodson, D. P., Huerta-Espino, J., Jin, Y., Njau, P., Waanyarra, R., Herrera-Foessel, S. A., & Ward, R. W. (2011). The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. *Annual Review of Phytopathology*, 49, 465–481. <https://doi.org/10.1146/annurev-phyto-072910-095423>

Tambussi, E. A., et al. (2007). The role of awns in wheat grain filling. *Annals of Botany*, 100, 349–356.

UPOV (2012). *Guidelines for the conduct of tests for distinctness, uniformity and stability: Wheat*. TG/3/12.

UPOV. (2012). Guidelines for the conduct of tests for distinctness, uniformity and stability: Wheat (*Triticum aestivum* L.) (TG/3/12 Rev.). International Union for the Protection of New Varieties of Plants, Geneva.

Characterization of Indian released varieties for its genetic basis of resistance and stem solidness

Nisha R, Sivasamy M*, V.K.Vikas, P.Shajitha, Vijaishree S, Jenitha K, Suganya C, Radhiga R, C.Arun Kumar, V.Balaji and John Peter

ICAR-Indian Agricultural Research Institute Regional Station, Wellington, Tamil Nadu -643 231, India

***Corresponding author:**
iariwheatsiva@gmail.com

Abstract

The present study elucidates the genetic basis of resistance to stem, leaf rust and powdery mildew, along with the climate-resilient solid stem traits, in 428 Indian wheat varieties released between 1961 and 2018. These varieties were evaluated across two contrasting field environments under optimal and heat-stressed conditions. Molecular marker analysis was employed to detect major ASR rust resistance genes, including *Sr24/Lr24*, *Sr25/Lr19*, *Sr26*, *Sr38/Lr37/Yr17*, and *Sr31/Lr26/Yr9*, and to assess their association with stem solidness. Among the screened genotypes, 64 carried *Sr24*, 18 harbored *Sr25/Lr19*, 33 possessed *Sr31*, and 36 contained *Sr38/Lr37*. Phenotypic assessment identified 108 varieties (25%) consistently expressing the solid stem trait, which was genetically associated with the 175-bp allele of the SSR marker *Xgwm247*. Notably, none of the evaluated cultivars carried the Ug99-race specific effective resistance genes *Sr26* or *Sr36*. The results highlight substantial variability in the deployment of rust resistance genes

in Indian wheat germplasm and emphasize the potential of integrating stem solidness with effective resistance genes to enhance yield stability, disease resistance and climate resilience. These findings provide a robust molecular foundation for targeted wheat improvement programs.

Introduction

Wheat (*Triticum aestivum* L.) is the most extensively cultivated cereal crop worldwide and constitutes a primary source of dietary calories and protein for a significant proportion of the global population (FAO, 2021; Jalal et al., 2026). Its allohexaploid genome and long evolutionary history have enabled adaptation to a wide range of agro-climatic conditions (Mansour et al., 2018). However, the sustainability of wheat production is increasingly threatened by climate change, rising temperatures, and an anticipated 60% increase in global demand by 2050 (Pachauri and Reisinger, 2007). These challenges are compounded by intensified biotic and abiotic stresses, including heat stress, lodging, drought, and the resurgence of major diseases (Porter and Semenov, 2005).

Among biotic constraints, rust diseases caused by *Puccinia* species—stem rust (*P. graminis* f. sp. *tritici*), leaf rust (*P. triticina*), and stripe rust (*P. striiformis* f. sp. *tritici*)—remain the most devastating threats to wheat production globally. The emergence and rapid spread of highly virulent races, particularly the Ug99 lineage, have rendered several widely deployed resistance genes ineffective (Pretorius et al., 2000; Singh et al., 2011; Chai et al., 2022). In addition, powdery mildew caused by *Blumeria graminis* f. sp. *tritici* (Bgt) continues to cause significant

yield losses under favorable environmental conditions (Li et al., 2025). These diseases pose a persistent threat to wheat-growing regions of South Asia, including India (Prasad et al., 2022).

In India, stem rust is predominantly prevalent in the Central and Peninsular zones, which together cover nearly seven million hectares of wheat cultivation (Bhardwaj et al., 2019). The pathogen survives year-round in the southern hill regions, such as the Nilgiris, due to favorable climatic conditions (Joshi et al., 1985; Nagarajan and Joshi, 1985). Leaf rust, in contrast, is ubiquitous and occurs across all wheat-growing zones of the country (Bhardwaj et al., 2019). Several rust resistance genes introgressed from wild relatives, including *Sr24/Lr24*, *Sr25/Lr19*, and *Sr26* all from *Thinopyrum ponticum*, and *Lr37/Sr38/Yr17* from *Aegilops ventricosa* as well as the durable adult plant resistance gene *Sr2* (*T. aestivum*), have historically contributed to mitigating rust epidemics (Sharma and Knott, 1966; Sears, 1973; Ellis et al., 2014).

Contemporary wheat improvement strategies emphasize the deployment of durable resistance through gene pyramiding and alien introgressions. Resistance loci such as *Lr24/Sr24*, *Lr19/Sr25*, *Lr37/Sr38/Yr17*, and *Sr31* carried on the 1BL.1RS rye translocation have played a significant role in enhancing disease resistance and agronomic performance (Bariana and McIntosh, 1993; Cox et al., 1995; Sibikeev et al., 2018). Alongside disease resistance, stem solidness—controlled primarily by loci such as *SS1* and *Qss.msub-3BL* on chromosome 3B has gained importance as

a climate-adaptive trait conferring resistance to lodging, insect pests, and drought stress (Cook et al., 2004; Liu et al., 2023).

Advances in molecular marker technology have enabled precise identification and deployment of resistance genes through marker-assisted selection, thereby improving the durability and efficiency of wheat breeding programs. In this context, the present study aims to characterize major rust and powdery mildew resistance genes in Indian released wheat varieties and to examine their association with the solid stem trait under diverse environmental conditions.

Materials and Methods

Plant Material and Field Evaluation

A total of 428 wheat cultivars comprising *T. dicoccum* (8), *T. durum* (60), triticale (5), and *T. aestivum* (353), released between 1965 and 2018, were evaluated for resistance to rusts, powdery mildew, and for the solid stem trait. Field experiments were conducted at the ICAR–Indian Agricultural Research Institute (IARI), Regional Station, Wellington, Tamil Nadu, India (11°22'47.5"N; 76°46'26.1"E; 1850 m AMSL) from 2023–2025. To accelerate generation turnover, two parallel evaluations were undertaken: one at Wellington for rust resistance and stem solidness, and another at Tamil Nadu Agricultural University (TNAU), Coimbatore, for thermo-tolerance and stem solidness assessment.

Assessment of Solid Stem Trait

For evaluating stem solidness, ten representative plants per plot were sampled. Five consecutive internodes from

each stem were cut transversely and scored using a five-grade scale: grade 1 (0% pith), grade 2 (25%), grade 3 (50%), grade 4 (75%), and grade 5 (100% pith-filled) Figure 1. The cumulative score across internodes represented the degree of stem solidness.

DNA Isolation and PCR Analysis

Genomic DNA was extracted from 3–4-week-old seedling leaf tissue using the CTAB method (Doyle and Doyle, 1990)

and standardized to 25 ng μL^{-1} . PCR amplification was carried out using gene-linked **SSR** and **STS** markers targeting rust resistance genes and the solid stem trait (Table 1). Amplified products were resolved on 1.5–3.0% agarose or Metaphor agarose gels, stained with ethidium bromide, and visualized under UV illumination.

Table 1: Molecular markers used in this study

S.No	Target gene	Linked marker	Size of fragment (bp)	Reference
1.	<i>SSt (Solid stem trait)</i>	<i>GWM 247</i>	175bp	Cook et al., (2004)
2.	<i>Lr19/Sr25</i>	<i>Gb</i>	130bp	Prins et al., (2001)
3.	<i>Lr24/Sr24</i>	<i>Sr24#12</i>	500bp	Mago et al. (2011)
4.	<i>Lr37/Sr38/Yr17</i>	<i>Ventriup /LN2</i>	262 bp	Helguera et al., (2003)
5.	<i>Sr31/Lr26/Yr9/Pm8</i>	<i>Iag95</i>	1100 bp	Mago et al. (2005)
6.	<i>Sr26</i>	<i>Sr26#43</i>	207bp	Mago et al. (2011)
7.	<i>Sr36</i>	<i>Stm 773</i>	155bp	Tsilo et al.(2008)
8.	<i>Sr2+</i>	<i>Gwm533</i>	120bp	Spielmeyer et al. (2003)
9.	<i>Lr34+</i>	<i>csLV34</i>	150bp	Spielmeyer et al. (2008)
10.	<i>Lr46+</i>	<i>Wmc44</i>	242bp	William et al. 2003
11.	<i>Lr67+</i>	<i>cf71</i>	214bp	Hiebert et al., 2010

Results

Detection of Rust Resistance Genes Using Molecular Markers ALL STAGE RESISTANCE GENES

Lr19/Sr25 (Marker: Gb)

Marker-assisted screening using the diagnostic marker *Gb* confirmed the presence of the *Lr19/Sr25* gene complex in 18 of the 428 released wheat varieties (4.21%), as evidenced by the amplification of the expected 130 bp fragment. *Lr19/Sr25* confers strong all-stage

resistance to both leaf rust and stem rust and is derived from *Thinopyrum ponticum*. Despite its effectiveness, the relatively low frequency of this gene complex among released varieties suggests cautious deployment, likely due to historical concerns regarding linkage drag affecting yield and quality traits. Nevertheless, its confirmed presence in elite backgrounds highlights its continued relevance as a

valuable resistance source when judiciously deployed.

Sr24/Lr24 (Marker: Sr24#12)

The *Sr24/Lr24* gene complex was detected in 64 varieties (14.95%) using the marker *Sr24#12*, which produced the characteristic 500 bp PCR product. *Sr24* provides strong resistance to stem rust, including protection against several virulent races, while *Lr24* contributes to leaf rust resistance. The moderate frequency observed indicates that *Sr24/Lr24* has been more widely adopted in Indian breeding programs than other alien introgressions, reflecting its stable performance and minimal negative agronomic effects. Its presence across multiple released varieties underscores its importance as a reliable ASR gene under Indian conditions.

Sr31/Lr26/Yr9 (Marker: Iag95)

The rye-derived 1BL.1RS translocation, carrying the *Sr31/Lr26/Yr9* gene complex, was identified in 33 out of the 250 wheat varieties tested (13.20%) using the *Iag95* marker, which yielded the expected 1100 bp amplification product. Historically, *Sr31* has been one of the most widely deployed stem rust resistance genes worldwide due to its broad-spectrum effectiveness and associated yield advantages. The assessment of *Sr31* in a subset of released varieties reflects the phased nature of marker screening, with the remaining lines yet to be evaluated. Despite reports of virulence against *Sr31* in other wheat-growing regions, the continued presence of the *Sr31/Lr26/Yr9* translocation in Indian released varieties indicates its sustained agronomic value

and effectiveness under Indian conditions, where virulence remains limited.

Lr37/Sr38/Yr17 (Marker: VENTRIUP-LN2)

The *Lr37/Sr38/Yr17* gene cluster was detected in 36 varieties (8.41%) using the *VENTRIUP-LN2* marker, producing a diagnostic 262 bp amplicon. This gene cluster, derived from *Aegilops ventricosa*, confers resistance to leaf rust, stem rust, and stripe rust. Its moderate frequency suggests selective deployment, often in combination with other resistance genes, to broaden the resistance spectrum. The continued presence of this cluster among released varieties reflects its utility in multi-disease resistance breeding, particularly in environments with complex rust pressure.

Sr26 (Marker: Sr26#43)

None of the 428 released wheat varieties amplified the diagnostic 207 bp fragment corresponding to *Sr26* when screened with the *Sr26#43* marker. *Sr26* is a highly effective stem rust resistance gene, including effectiveness against *Ug99* lineage races. Its complete absence in Indian released germplasm suggests that *Sr26* has not yet been incorporated into commercial cultivars, possibly due to limited availability, breeding challenges, or prioritization of other resistance sources. This highlights *Sr26* as a potential candidate for future introgression and diversification of stem rust resistance in India.

Sr36/Pm6 (Marker: Xgwm773-2)

Similarly, screening with the *Xgwm773-2* marker revealed no amplification of the expected 155 bp fragment associated with

the *Sr36/Pm6* gene complex in any of the evaluated varieties. *Sr36*, derived from *Triticum timopheevii*, confers resistance to stem rust and powdery mildew. Its absence from released Indian varieties

indicates that this gene has not been utilized in national breeding programs, likely due to concerns over durability or linkage drag, reinforcing the need for careful evaluation before deployment.

ADULT PLANT RESISTANCE GENES

Lr34/Yr18 (Marker: csLV34)

The pleiotropic adult plant resistance (APR) gene *Lr34/Yr18* was detected in 21 out of 130 recent released varieties (16.15%) using the gene-based functional marker *csLV34*. *Lr34* is well known for conferring durable, race-non-specific resistance against multiple pathogens, including leaf rust, stripe rust, and powdery mildew, and is phenotypically associated with leaf tip necrosis (Ltn). Although its frequency among recently released varieties is moderate, the continued presence of *Lr34* underscores its high breeding value and sustained preference in resistance breeding programs that prioritize durability over complete immunity.

Lr46/Yr29 (Marker: Xwmc44)

The APR gene *Lr46/Yr29* was identified in 22 of the 130 varieties (16.92%) using the linked SSR marker *Xwmc44*. *Lr46* confers partial, slow-rusting resistance and is considered functionally analogous to *Lr34*, though typically with a milder phenotypic expression. Its comparable frequency to *Lr34* suggests targeted deployment, often in combination with other APR genes. The presence of *Lr46/Yr29* reflects the increasing emphasis on pyramiding multiple minor-effect genes to enhance resistance durability in modern Indian wheat breeding.

Lr67/Yr46 (Marker: cfd71)

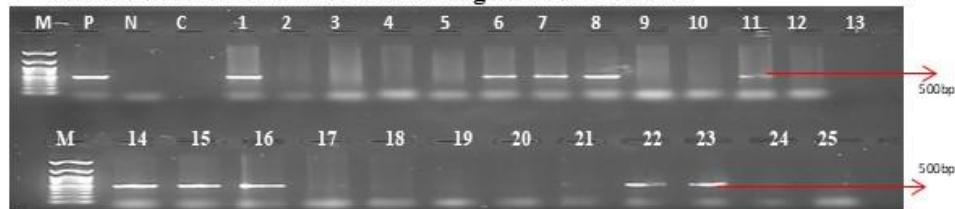
The adult plant resistance gene *Lr67/Yr46* was detected in 94 out of 130 varieties (72.31%) using the gene-based marker *cf71*, making it one of the most prevalent APR genes among recent Indian wheat releases. *Lr67* encodes a modified hexose transporter that confers broad-spectrum, partial resistance to multiple rust pathogens. Its high frequency highlights its central role in contemporary breeding strategies, reflecting a clear shift toward molecularly guided incorporation of durable, race-non-specific resistance.

Sr2+ (Marker: Xgwm533)

The cornerstone stem rust APR gene *Sr2* was identified in 104 of the 130 varieties (80.00%) using the SSR marker *Xgwm533*, making it the most frequently detected resistance gene in the study. *Sr2*, often associated with the *Sr2* complex and the morphological marker pseudo-black chaff (PBC), provides durable, partial resistance to stem rust. Its exceptionally high frequency among recent releases highlights its long-standing and continued importance in Indian wheat improvement programs. The persistence of *Sr2* across modern cultivars underscores its unparalleled contribution to long-term stem rust resistance and breeding stability.

Molecular Analysis of the Solid Stem Trait

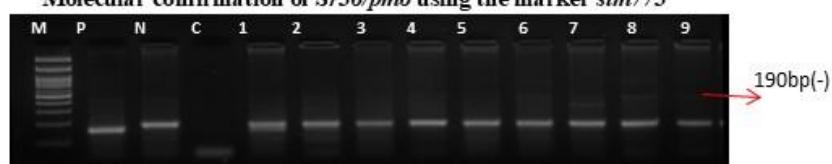
Assessment of stem solidness revealed substantial variation among the evaluated varieties. Based on phenotypic scoring of internode pith development, 108 varieties (25%) consistently expressed the solid stem trait, while the remaining genotypes exhibited hollow or semi-solid stems. Molecular screening using the SSR marker *Xgwm247* revealed clear allelic


differentiation between solid and hollow stem types. Solid-stemmed genotypes consistently amplified a 175 bp fragment, whereas hollow-stemmed varieties showed bands ranging from 180 to 190 bp. A subset of genotypes exhibited intermediate bands (~160 bp), which corresponded to semi-solid stem phenotypes with pith development scores between 2 and 3. Further marker validation confirmed the association of these genotypes with the solid stem allele.

Assessment of the stem-solidness (DePauw and Read 1982)

1—hollow pith (0% filled), 2—25% filled, 3—50% filled, 4—75% filled,
5—solid stem (100% filled)

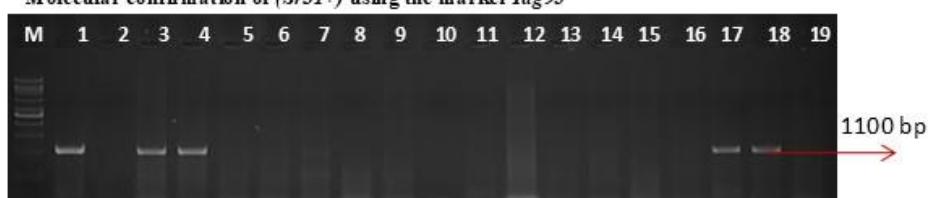
Molecular confirmation of *Sr24/Lr24* using the marker *Sr24#12*


M-Marker, P-Positive control- AKAW 4627, N-Negative- HW 971; C- Non template control ; 3- C306, 4-NI 5439, 5-LOK-1, 6-HW 1085, 7-HW 2045, 8-HW 5207 9-MACS 2496, 10- PBN 51,11- RAJ 4037, 12-HW 1098, 13-DBW 39,14-KHARCHIA 65, 15-MP 1142, 16-NI 5463, 17-DT 46, 18-HD 3171, 19-UP 2003, 20-TL 2969, 21-UP 215, 22-HW 5216, 23- SONAK, 24-HD 2967, 25-PBW

Molecular characterization of solid stem trait (GWM 247)


L:100bp ladder, Lane 1:DBW 39 (positive control), 2- COW(W)-1(positive control), AKAW4627, 4-DL 153-2, 5- HD 2204, 6- HD 2327, 7-DDK 1025, 8-HD 2985, 9-HD 3090, 10- VAIHALI,11- HUW 510 , 12- HW 1085, 13- KSML 3, 14- MP1142, 15- MP1202, 16- MP 3288, 17- NIAW 1415

Molecular confirmation of *Sr36/pm6* using the marker *stm773*


M-Marker, P-Positive control- HW 2436-2, N-Negative- COW(W)-1; C- Non template control ; 1-9- Indian released wheat varieties

Molecular confirmation of *Lr37/Sr38/Yr17* using the marker (VENTRIUP/LN2)

L:100bp ladder, Lane 1-HD 2967(positive control), 2- WH 147(Negative control), 3-COW(w)-1, 4-HPW 42, 5-C306, 6-HW 5207, 7-PBW 550, 8-Lok-1, 9-Sonalika, 10- Chotti 1ema, 11- PBW 723 , 12- PBN 51, 13- HD 3171, 14- DDK 1005, 15- , 16- HW 1098, 17- WH 1105, 18- HPW 184, 19- HD 3090

Molecular confirmation of (*Sr31+*) using the marker *Iag95*

L:100bp ladder, Lane 1-MACS 2496(positive control), 2- WH 147(Negative control), 3-COW(W)-1, 4- HPW 42, 5-C306, 6-HW 5207, 7-PBW 550, 8-Lok-1, 9-Sonalika, 10- Chotti 1ema, 11- NI5439 , 12- PBN 51, 13- AKAW 4627, 14- DDK 1005, 15- , 16- HW1098, 17- DT 46, 18- HPW 184, 19- TL1210

Discussion

The comprehensive molecular and phenotypic characterization of 428 Indian released wheat varieties revealed substantial variability in the deployment of rust resistance genes and the solid stem trait, reflecting historical breeding priorities and evolving disease pressures. The uneven distribution of resistance loci observed in this study underscores both the achievements and limitations of past wheat improvement programs in India.

The relatively higher frequency of *Sr24/Lr24* among the evaluated varieties confirms its long-standing importance in Indian wheat breeding. This gene complex, introgressed from *Thinopyrum ponticum*, has been widely adopted due to its broad-spectrum effectiveness against stem rust and its continued efficacy against several Ug99 variants (Spielmeyer et al., 2003; Bhardwaj et al., 2019). However, the moderate presence of *Lr19/Sr25* indicates a more conservative utilization, likely influenced by earlier concerns regarding linkage drag affecting flour color and yield stability, despite its proven durability against stem rust (Sharma and Knott, 1966; Prins et al., 2001). The coexistence of these alien introgressions in a limited number of genotypes suggests that opportunities remain for combining complementary resistance genes to enhance durability.

The detection of the *Lr37/Sr38/Yr17* gene cluster in a moderate proportion of released varieties highlights the strategic incorporation of the 2NS/2AS translocation in Indian germplasm. This translocation confers resistance to multiple rust pathogens and wheat blast, making it particularly valuable under changing

disease scenarios (Helguera et al., 2003; McIntosh et al., 2017). Nevertheless, reports of reduced effectiveness of *Yr17* in certain regions emphasize the need for pyramiding this gene with additional resistance sources to prevent resistance erosion.

Although virulence to *Sr31* has been reported globally, particularly against the Ug99 race group (*Puccinia graminis* f. sp. *tritici*), *Sr31* remains effective under Indian conditions, as Ug99-lineage races have not established widespread virulence in India (Pretorius et al., 2000; Singh et al., 2011; Nagarajan et al., 2014). Consequently, the continued presence of the 1BL.1RS translocation in Indian cultivars reflects its ongoing contribution to stem rust resistance, in addition to its well-documented agronomic advantages such as yield stability and adaptation. Nevertheless, the global breakdown of *Sr31* underscores the importance of reducing reliance on single major genes and adopting gene diversification and pyramiding strategies to ensure long-term resistance durability (Singh et al., 2015; Ellis et al., 2014). Of particular concern is the complete absence of *Sr26* and *Sr36* in the studied germplasm. Both genes are recognized for their high level of resistance to Ug99 and related races and have been successfully deployed in international breeding programs (Liu et al., 2010; Singh et al., 2015). Their absence in Indian released varieties represents a significant vulnerability and highlights an urgent need for their strategic introgression through pre-breeding and marker-assisted selection.

The ASR genes screened in this study were selected based on their documented

effectiveness against prevalent rust races in India and their historical and current deployment in Indian wheat breeding programs. Genes such as *Sr24*, *Sr31*, and *Lr37* continue to provide effective resistance in several agro-ecological zones, while *Lr19* remains valuable due to its associated yield benefits. The objective was to assess the “floating” or persistence of these effective ASR genes in released varieties, rather than screening genes that are either ineffective under Indian conditions or have not been widely deployed.

Only recently released wheat varieties (post-2010) were screened for APR genes in this study because older Indian varieties have already been extensively characterized and reported for APR gene content, and the present analysis aimed to assess the current deployment, accumulation, and shifting trends of durable resistance genes in modern breeding pipelines.

The phenotypic and molecular evaluation of the solid stem trait revealed a strong association between stem solidness and the 175 bp allele of the SSR marker *Xgwm247*, corroborating earlier studies that identified *SS1* as a major locus governing stem pith development (Cook et al., 2004; Nilsen et al., 2017). Approximately one-quarter of the evaluated varieties consistently expressed solid stems, indicating that this trait has been inadvertently selected in certain breeding backgrounds, possibly due to its association with lodging resistance and improved assimilate partitioning. The identification of semi-solid stems in some genotypes suggests quantitative modulation of pith development, which may offer flexibility in balancing stem strength and biomass allocation.

Beyond its role in lodging resistance, stem solidness has gained importance as a climate-resilient trait. Solid-stemmed wheat lines have been reported to exhibit enhanced tolerance to drought and heat stress, improved stem carbohydrate storage, and resistance to stem-boring insects such as wheat stem sawfly (Cook et al., 2004; Liu et al., 2023). The coupling of solid stem alleles with rust resistance genes observed in certain genotypes presents an opportunity to develop cultivars with combined resistance to biotic and abiotic stresses. Such trait combinations are particularly relevant under Indian agro-climatic conditions, where terminal heat stress and disease pressure frequently co-occur.

The integration of molecular marker data with multi-environment phenotypic screening in this study enhances confidence in the identified resistance sources and their practical breeding value. Marker-assisted selection enables precise tracking of resistance genes and adaptive traits, reducing reliance on phenotypic screening alone, which can be confounded by environmental variability and pathogen diversity. The findings of this study provide actionable insights for wheat breeders, emphasizing the need to broaden the genetic base of rust resistance while simultaneously incorporating climate-adaptive traits such as stem solidness.

In conclusion, the study highlights critical gaps in the current resistance landscape of Indian wheat varieties, particularly the absence of key Ug99-effective genes, while also revealing underutilized opportunities for enhancing resilience through stem solidness. Strategic gene pyramiding, supported by molecular

markers and informed by pathogen surveillance, will be essential for developing durable, high-yielding wheat cultivars capable of withstanding future disease outbreaks and climatic challenges.

References:

De Pauw RM, Read DWL (1982). The effect of nitrogen and phosphorus on the expression of stem solidness in Canuck wheat at four locations in southwestern Saskatchewan. *Can J Plant Sci.* 62:593-598.

Doyle JJ, Doyle JL (1990). Isolation of plant DNA from fresh tissue. *Focus.* 12:13-15.

Chai Y, Senay S, Horvath D, Pardey P (2022). Multi-peril pathogen risks to global wheat production: A probabilistic loss and investment assessment. *Front Plant Sci.* 13.

Cook JP, Wichman DM, Martin JM, Bruckner PL, Talbert LE (2004). Identification of microsatellite markers associated with a stem solidness locus in wheat. *Crop Sci.* 44(4):1397-1402.

Houshmand, S., Mohammadi, S. A., Mardi, M., Saeidi, H., Jafarzadeh, J., & Moradi, F. (2007). Marker-assisted selection for stem solidness in wheat (*Triticum aestivum* L.). *Pak J Biol Sciences*, 10(22), 4047-4052.

Huelgera MG, Branlard G, Dardevet M, Charmet G (2003). Transfer of leaf rust and yellow rust resistances from *Aegilops ventricosa* to bread wheat. *Theor Appl Genet.* 106(2):277-287.

Joshi LM (1982). Wheat rust management- present knowledge and future prospects. *Kavaka.* 10:1-12.

Li, Q., Wang, J., Zhou, S., & Zhang, G. (2022). Genetic dissection of lodging resistance-related traits in winter wheat (*Triticum aestivum* L.) using a high-density SNP-based genetic map. *BMC Plant Biology*, 22(1), 1-15.

Mago R, Tabe L, McIntosh RA, Kota R, Paux E, Wicker T, et al (2011). A multiple resistance locus on chromosome arm 3BS in wheat confers resistance to stem rust (*Sr2*), leaf rust (*Lr27*) and powdery mildew. *Theor Appl Genet.* 123:615-623. doi: 10.1007/s00122-011-1611-y.

Nilsen KT, Rønning K, Cuesta-Seijo JA, Hsieh YSY (2020). Improved starch and glucose yields from barley straw by pretreatment with a solid-stemmed wheat pith material. *Ind Crops Prod.* 151:112484.

Peterson RF, Campbell AB, Hannah AE (1948). A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. *Can J Res.* 26:496-500.

Prasad P, et al (2022). Population genetics of the wheat stem rust pathogen, *Puccinia graminis* f. sp. *tritici*, in India. *Phytopathology.* 112(4):692-702.

Prins R, Groenewald JZ, Marais GF, Snape JW, Koebner RMD (2001). AFLP and STS tagging of *Lr19*, a gene conferring resistance to leaf rust in wheat. *Theor Appl Genet.* 103(4):618-624.

Singh RP, et al (2015). Emergence and Spread of New Races of Wheat Stem Rust Fungus: Continued Threat to Food Security and Prospects of Genetic Control. *Phytopathology*: 105(7):872-84. doi: 10.1094/PHYTO-01-15-0030-

Spielmeyer W, Sharp PJ, Lagudah ES (2003). Identification and validation of markers linked to broad-spectrum stem rust resistance gene *Sr2* in wheat (*Triticum aestivum* L.). *Crop Sci.* 43:333-339.

Tsilo TJ, Jin Y, Anderson JA (2008). Diagnostic microsatellite markers for the detection of stem rust resistance gene *Sr36* in diverse genetic backgrounds of wheat. *Crop Sci.* 48:253-261.

Zadoks JC, Chang TT, Konzak CF (1974). A decimal code for the growth stages of cereals. *Weed Res.* 14:415-421.

Table 2 Molecular characterization of released varieties for ASR and APR genes

S.NO	Name of the gene	Number of lines tested	Number of Polymorphic Lines	Name of the Varieties
1	<i>Lr24/Sr24</i>	428	69	AKAW 4627,COW(W)1,DL 784-3 (VAISHALI),DL 788-2 (VIDISHA),DL 803 -3 (KANCHAN),DWR 195 (ANURADHA),DWR 225,GW 11,GW 366,HD 2204,HD 2781 (ADITYA),HD 2833 (TRIPTI),HD 2851 (PUSA VISHESH),HD 2864 (URJA),HD 2888,HD 2932,HD 3043,HDR 77,HI 1418 (NAVEEN CHANDOUSI),HI 1454 (ABHA),HI 1500,HI 1531,HI 1563,HPW 89 (SURABHI),HUW 37 (MALVIYA 37),HUW 468,HUW 510,HW 1085 (BHAVANI),HW 2045,HW 5207 (COW3),K 9533 (NAINA),KHARCHIA 65,MP 1142,MP 1202,MP 3288,NI 5643,NIAW 1415,RAJ 1114,RAJ 1972,RAJ 4037,RAJ 4238,RW 346,SAFED LERMA,SAGARIKA,SKAML 1,SONAK,SWL 8 (SINGCHEN),UAS 304,UP 1109,UP 2121,UP 2338,UP 2382,UP 2565,UP 2572,VL 404,VL 719,VL 738,VL 804,WG 357,WH 1021,WH 1080,WH 157,WH 283,WH 291,WH 533,WH 542,WL 410,WL 711,HW 5216
2	<i>Lr37+</i>	428	35	GW1139,PDW 291,PDW 314,TL 1210,UAS 415,DBW 39,DBW 88,DPW 621-50,DWR 225,HD 2285 (GOBIND),HD 2967,HDR 77,HI 617 (SUJATA),HS 507,HS 542,HW 517,MACS 6273,MACS 6478,MP 3173,MP 4106,PBN 51,PBW 660,RW 346,UP 2003,UP 215,UP 2425,UP 262,UTKALIKA,VL 802,WH 1105,HDCSW 18,HD 3171,PBW 677,PBW 723,PBW 725
3	<i>Lr19/Sr25</i>	428	19	DT46,TL1210,TL2969,UAS415,WHD912,HW 1098 (NILGIRI KHAPLI),MPO1255,HD3090,K 9644 (ATAL),PBW 527, PBW 533,PBW644,RAJ1482,VL832,DH

				114(HIMPRATHAM), HD 3117, HD 3118 (PUSA VATSALA), HD 3171
4	<i>Sr31+</i>	250	33	DT46,MACS 2496,COW(W)1,CPAN 3004 (SANGAM),DBW 39,DL 803 -3 (KANCHAN),DWR 16 (KEERTHI),DWR 162,GW 89,HD 2643 (GANGA),HD 2687 (SHRESTH),HD 2967,HPW 184 CHANDRIKA,HPW 42 (ARADHANA),NIAW 1415,NW 1067,PBW 533,PBW 550,PBW 644,PBW 660,RAJ 1482,RAJ 4037,RAJ 4079,RATAN (CG 5016),SKW 196 (SHALIMAR WHEAT),UP 2565,UP 301,VL 802,VL 907,WH 157,WH 291,WH 533,WL 711,DBW 107,WH 1142,HW 5216 (PUSA THENMALAI),DH 114(HIMPRATHAM),PBW 723,VL 953
5	<i>Lr34+</i>	130	21	DBW 14, DBW 71, HD 2967, HD 3043, HI 1500 (AMRITA), HI 1563, HPW 155, HPW 251, HW 5207 (COW3), KRL 213, MACS 6478, MP 3211, PBW 509, PBW 596, PBW 644, RAJ 4037, RAJ 4083, SKW 196, (SHALIMAR WHEAT), VL 802, VL 829, WH 1080
6	<i>Lr46+</i>	130	22	AKAW 3722, AKAW 4627, ARPA (CG 5011), HD 2888, HD 2932, HI 1479 , (SWARNA), HS 420 (SHIVALIK), S 490, K 9644 (ATAL), MACS 6478, MP 1142, MP 1202, MP 3211, PBW 396, RAJ 4120,UP 2526, WH 1021, WH 1025, WR 544 (PUSA GOLD), PBW 658, HIMPRATHAM (DH 114)
7	<i>Lr67+</i>	130	94	AKAW 3722, CBW 38, COW(W)1, DBW 14,DBW 16, DBW 17 (DWR 17), DBW 39, DBW 71, DBW 88, DBW 90, DBW 93, DPW 621-50, GW 366, HD 2781 (ADITYA), HD 2824 (POORVA), HD 2851 (PUSA VISHESH), HD 2888, HD 2894, HD 2932, HD 2967, HD 2985, HD 2987, HD 3059, HD 3086, HD 3090, HI 1500 (AMRITA), HI 1531 (HARSHITA), HPW 155, HPW 184 (CHANDRIKA), HPW 251, HPW 349

				HS 420 (SHIVALIK), HS 490, HS 542, HUW 510, K 1006, K 9351 (MANDAKINI), K 9423 (UNNAT HALNA), K 9533 (NAINA), K 9644 (ATAL), KRL 210, KRL 213, KRL 19, MACS 6222, MACS 6478, MP 1142, MP 1201, MP 1202, MP 1203, MP 3173, MP 3211, MP 3288, MP 4010, MP 4106, NIAW 1415, NIAW 301 (TRIMBAK), NIAW 917 (TAPOVAN), NW 5054, PBW 343, PBW 396, PBW 443, PBW 502, PBW 509, PBW 533, PBW 550, PBW 590, PBW 596, PBW 644, RAJ MOLYA RODHAK 01 (CCNRV01), RATAN (CG 5016), SKW 196 (SHALIMAR WHEAT), UAS 304, UP 2526, UP 2565, UP 2584, VL 802, VL 804, VL 907, WH 1021, WH 1080, WH 1105, WH 1124, WH 711, WR 544 (PUSA GOLD), DBW 107, DBW 110, WH 1142, PDKV WASHIM (WSM 1472), HIMPRATHAM (DH 114), HD 3117, HD 3118 (PUSA VATSALA), HDCSW 18, MP 3382
8	<i>Sr2+</i>	130	104	HW 1095 (COW 2), AKAW 3722, AKAW 4627, ARPA (CG 5011), CBW 38, COW(W)1, DBW 14, DBW 16, DBW 17 (DWR 17), DBW 39, DBW 71, DBW 88, DBW 90, DBW 93, DPW 621-50, GW 322, GW 366, HD 2733 (VSM), HD 2781 (ADITYA), HD 2833 (TRIPTI), HD 2851 (PUSA VISHESH), HD 2864 (URJA), HD 2894, HD 2932, HD 2967, HD 3043, HD 3059, HD 3086, HD 3090, HI 1479 (SWARNA), HI 1544 (PURNA), HI 1563, HPW 251, HPW 349, HS 420 (SHIVALIK), HS 490, HS 507 (PUSA SUKETI), HUW 510, HW 2044, HW 2045 (KAUSHAMBI), HW 5207 (COW3), K 9351 (MANDAKINI), K 9423 (UNNAT HALNA), K 9533 (NAINA), KRL 210, KRL 213, MACS 6222, MACS 6478, MP 1142, MP 1201, MP 1203, MP 3173, MP 3211, MP 3288, MP 4010, MP 4106, NIAW 1415, NIAW 917 (TAPOVAN), NW 1067, NW 2036, PBW 343, PBW 443, PBW 502, PBW 533, PBW 550

				PBW 596, PBW 644, RAJ 3777, RAJ 4037, RAJ 4079, RAJ 4083, RAJ 4120, RAJ 4238, RAJ MOLYA RODHAK 01 (CCNRV01), RATAN (CG 5016), SKW 196 (SHALIMAR WHEAT), UAS 304, UP 2526, UP 2554, UP 2565, UP 2572, UP 2584, VL 802, VL 804, VL 832, VL 892, WH 1021, WH 1025, WH 1080, WH 1105, WH 1124, WH 711, WR 544 , PUSA GOLD), DBW 107, DBW 110, WH 1142, PDKV WASHIM (WSM 1472), HW 5216 (PUSA THENMALAI), PBW 658, HIMPRATHAM (DH 114), HD 3117, HD 3118 (PUSA VATSALA), HDCSW 18, MP 3382
9	SST-1	428	108	HD 4672(MALAV RATNA),HI 8627 (MALAV KIRTI),HI 8713 (PUSA MANGAL),JNK -4W-184,MACS 1967,MACS 2496,MACS 2971, MACS 9,MPO 1106, WH 943 , AKAW 4627,CHHOTI LERMA, COW(W)1,CPAN 1796, CPAN 3004 (SANGAM),D 134,DBW 17 (DWR 17),DBW 39,DBW 88,DBW 90,DBW 93,DL 153-2 (KUNDAN),DL 784-3 VAISHALI),DL 788-2 (VIDISHA),DL 803 -3 (KANCHAN),DPW 621-50,DURGAPURA 65,DWR 16 (KEERTHI),DWR 162,DWR 195 (ANURADHA),DWR 225,GW 89,HB 208,HD 1925 (SHERA),HD 1941 (HIRA),HD 1949 (MOTI),HD 1981 (PRATAP),HD 2204,HD 2270,HD 2278 (PARVATI),HD 2281,HD 2285 (GOBIND),HD 2307,HD 2329,HD 2428,HD 2501,HD 2643 (GANGA),HD 2687 (SHRESTH),HD 2824 (POORVA),HD 2864 (URJA),HD 2894,HD 2967,HD 3086,HI 617 (SUJATA),HPW 184 (CHANDRIKA),HPW 42 (ARADHANA),HUW 510,HW 1085 (BHAVANI),HW 5207 (COW3),K 88 (K8804),K 9107 (DEWA),K 9644 (ATAL),KSML 3,MP 1142,MP 1202,MP 3288,NIAW 1415,NW1067,NW 2036 ,NW 5054,PBW 527,PBW 533,PBW 550,PBW 644,PBW 660,RAJ 1482,RAJ 4037,RAJ 4079,RAJ 4083,RAJ 4238,RAJ MOLYA

			RODHAK 01 (CCNRV01), RATAN (CG 5016), SKW 196 (SHALIMAR WHEAT), SONALIKA, TAWA 267, UP 2526, UP 2565, UP 301, VL 802, VL 832, VL 892, VL 907, WH 1105, WH 1124, WH 711, WH 1142, HW 5216 (PUSA THENMALAI), PBW 658, HIMPRATHAM (DH 114), HD 3117, HD 3118 (PUSA VATSALA), HDCSW 18, HD 3171, PBW 677, PBW 723, PBW 725, MP 3382, VL 953, HW 971
--	--	--	---

Wheat Field Day Report –

A **Wheat Field Day** was organized at ICAR-IARI Regional Station, Wellington, on **9th October 2024**, as part of the ongoing evaluation program under the **CRP – Agro-Biodiversity Component-III: Trait Discovery and Pre-Breeding in Wheat**. A total of **5068** tetraploid **durum wheat accessions** were being evaluated during Kharif 2024 against **Fusarium Head Blight (FHB)** and rusts, and this event provided a platform for reviewing the field performance of these accessions in the presence of eminent scientists and stakeholders.

The event was graced by several eminent personalities including:

Dr. Gyanendra Pratap Singh, Director, ICAR-NBGR, New Delhi

Dr. Ratan Tiwari, Director, ICAR-IIWBR, Karnal

Dr. Arun Gupta, Nodal Scientist, CRP-AB, IIWBR, Karnal

Dr. Sushil Pandey, Principal Scientist, NBGR, New Delhi - **Lead Centre Platform Coordinator**

Dr. Jyoti Kumari, Principal Scientist, NBGR, New Delhi – **Principal Project Investigator**

Dr. Sandeep Kumar, Principal Scientist, NBGR, New Delhi

Dr. Ragiba Makendar, Professor, University of Hyderabad

Dr. Yashwanthakumar and **Dr. Sudhir Navathe**, Scientists from ARI, Pune

Dr. Sunil M. Umate, Wheat/Maize Breeder, VNMKV, Parbhani
Delegates from UAS, Dharwad

Dr. Manish Vishwakarma, Breeder, BISA along with **Dr. M. Sivasamy**, PI & **Dr. V.K. Vikas**, Co-PI of the project and team.

The **Presidential Address** was delivered by **Dr. Gyanendra Pratap Singh**, who appreciated the coordinated efforts under CRP-AB and stressed the need for broader genetic base utilization in pre-breeding programs.

