Annual (April 1, 2012 to March 31, 2013) Performance Evaluation Report in respect of RFD 2012-2013 of RSCs i.e. Institutes Name of the Division: Crop Science Name of the Institution: Indian Agricultural Research Institute, New Delhi RFD Nodal Officer: Dr. I. Sekar, Principal Scientist, PME | | Weig | | | | | | Tar | get/Criteria | value | | | Perfo | rmance | Percent
Achievements | Reasons for shortfalls or | |---|--------|--|---|----------|-------------------|----------------|---------------------|--------------|----------|----------|------------------|--------------|-----------------------|-----------------------------------|---| | Objectives | ht (%) | Actions | Success Indicators | Unit | Weig
ht
(%) | Excellent 100% | Very
Good
90% | Good 80% | Fair 70% | Poor 60% | Achieveme
nts | Raw
Score | Weight
ed
Score | against Target values of 90% Col. | excessive
achievemen
ts, if
applicable | | Improving crop productivity | 24 | Evaluation of improved varieties for suitable crop husbandry practices | Number of breeding lines evaluated | Number | 0.5 | 14160 | 12746 | 11330 | 9915 | 8500 | 15000 | 100 | 0.50 | 117 | Pl. see
remarks in
Annexure | | and quality
through
conventional
and | | Evaluation,
characterization,
registration of
germplasm/variety | Number of
germplasm/population
characterized and
evaluated | Number | 0.5 | 9475 | 8530 | 7580 | 6635 | 5685 | 22780 | 100 | 0.50 | 267 | A | | molecular approaches. | | | Number of
germplasm/population/
variety registered | Number | 0.5 | 4 | 3 | 2 | 1 | 0 | 7 | 100 | 0.50 | 233 | В | | | | Characterization and
evaluation of novel and
beneficiary micro-
organisms | Microorganisms
identified/isolates
characterized/registered | Number | 0.5 | 94 | 85 | 75 | 65 | 56 | 231 | 100 | 0.50 | 271 | С | | | | Conservation/maintenan
ce of germplasm | Plants/genetic stocks conserved in situ | Number | 0.5 | 940 | 850 | 790 | 650 | 560 | 980 | 100 | 0.50 | 114 | | | | | | Plants/genetic stocks
conserved ex- situ | Number | 0.5 | 6940 | 6250 | 5555 | 4860 | 4165 | 9065 | 100 | 0.50 | 145 | | | | | Pre-breeding and basic activities for genetic improvement | Trait specific crosses attempted | Number | 1 | 4200 | 3800 | 3370 | 2950 | 2530 | 4100 | 97.5 | 0.98 | 107 | | | | | Evaluation of nutrition, quality and productivity response | Number of varieties
tested for quality/
productivity | Number | 1 | 2300 | 2100 | 1860 | 1600 | 1400 | 4700 | 100 | 1.00 | 223 | D | | | | Development of varieties/hybrids for field crops | Varieties/hybrids identified/release | Number | 8 | 20 | 18 | 16 | 14 | 12 | 26 | 100 | 8.00 | 144 | E | | | | | Nucleus seed produced | | | | | | | | | | | | | | | | Production of nucleus | Cereals | Tonnes | 0.5 | 34 | 31 | 27 | 24 | 21 | 33 | 96.7 | 0.48 | 106 | | | | | seed | Pulses | Quintals | 0.5 | 116 | 105 | 93 | 87 | 70 | 58 | 00 | 00 | 55 | F | | | | | Oil Seeds | Kgs | 0.5 | 12 | 11 | 10 | 8 | 7 | 18 | 100 | 0.50 | 163 | | | | | | Vegetables | Kgs | 0.5 | 8 | 7 | 6 | 5 | 4 | 198 | 100 | 0.50 | 2400 | G | |--|----|---|---|----------|-----|--------|--------|--------|--------|--------|-------|------|------|------|---| | | | | Breeder seed produced | | | | | | | | | | | | | | | | | Cereals | Tonnes | 0.5 | 344 | 310 | 275 | 240 | 206 | 419 | 100 | 0.50 | 135 | | | | | Production of breeder | Pulses | Tonnes | 0.5 | 17 | 15 | 13 | 12 | 10 | 23 | 100 | 0.50 | 153 | | | | | seed | Oil Seeds | Quintals | 0.5 | 50 | 45 | 40 | 35 | 30 | 66 | 100 | 0.50 | 146 | | | | | | Vegetables | Kgs | 0.5 | 688 | 620 | 550 | 480 | 410 | 1780 | 100 | 0.50 | 287 | Н | | | | | Quality seed produced | | | | | | | | | | | | | | | | | Cereals | Tonnes | 0.5 | 1057 | 951 | 845 | 740 | 630 | 976 | 92.4 | 0.46 | 102 | | | | | Production of quality seed | Pulses | Tonnes | 0.5 | 20 | 18 | 16 | 14 | 12 | 21 | 100 | 0.50 | 116 | | | | | seed | Oil Seeds | Quintals | 0.5 | 89 | 80 | 71 | 62 | 53 | 85 | 94.5 | 0.47 | 106 | | | | | | Vegetables | Quintals | 0.5 | 44 | 40 | 35 | 31 | 27 | 74 | 100 | 0.50 | 185 | I | | | | Production of quality planting material | Quality planting material produced | Number | 1 | 55,000 | 50,000 | 45,000 | 39,000 | 33,000 | 65000 | 100 | 1.00 | 130 | | | | | | Gene identified | Number | 2 | 10 | 9 | 8 | 7 | 6 | 14 | 100 | 2.00 | 155 | | | | | Trait specific improvement through | Gene incorporated/validated | Number | 1 | 20 | 18 | 16 | 14 | 12 | 130 | 100 | 1.00 | 722 | J | | | | molecular breeding | Gene sequenced and deposited in data bank | Number | 1 | 11 | 10 | 9 | 8 | 7 | 10 | 90 | 0.90 | 100 | | | Enhancing crop production | 14 | Improving nutrient use efficiency | Technologies
developed/ tested and or
validated | Number | 2 | 13 | 12 | 11 | 9 | 8 | 20 | 100 | 2.00 | 166 | K | | through
conservation
and efficient | | Development of water
management
technologies | Technologies
developed/tested and or
validated | Number | 2 | 8 | 7 | 6 | 5 | 4 | 12 | 100 | 2.00 | 171 | L | | management
of natural
resources; | | Development of efficient production technologies | Technologies
developed/ tested and
validated | Number | 2 | 13 | 12 | 11 | 9 | 8 | 13 | 100 | 2.00 | 108 | | | and
development
of | | Development of
technology for
conservation agriculture | Technologies
developed/ tested and
validated | Number | 1 | 10 | 9 | 8 | 7 | 6 | 7 | 70 | 0.70 | 78 | | | technologies
adapted to | | Characterization and improvement of soil | Soil samples tested | Number | 0.5 | 5880 | 5300 | 4700 | 4100 | 3500 | 5461 | 92.8 | 0.46 | 103 | | | climate
change | | health | Technologies tested and validated | Number | 1 | 6 | 5 | 4 | 3 | 2 | 5 | 90 | 0.90 | 100 | | | | | Strategies/technologies
for mitigation /
adaptation of Climate
Change effects and
promoting carbon
sequestration | Technologies
developed/ tested and
validated | Number | 2 | 11 | 10 | 9 | 8 | 7 | 8 | 70 | 1.40 | 80 | | | | | Strategies/technologies
for waste water
management | Technologies
developed/ tested and
validated | Number | 1 | 5 | 4 | 3 | 2 | 1 | 4 | 90 | 0.90 | 100 | | | | | Technologies for
protected agriculture,
dry land and precision
farming | Technologies for
protected agriculture,
dry land and precision
farming | Number | 2 | 8 | 7 | 6 | 5 | 4 | 8 | 100 | 2.00 | 114 | | | | | Development of DSS/SDSS for planning and forecasting | Simulation models
developed/validated and
advisories issues | Number | 0.5 | 4 | 3 | 2 | 1 | 0 | 3 | 90 | 0.45 | 100 | | |--|----|---|---|-----------|-----|--------|--------|--------|--------|--------|--------|------|------|------|---| | Bio security
and efficient
management
of pests,
diseases and | 9 | Development of
agrochemicals including
nano-formulations,
safety evaluation and
quality control | Molecules/formulations,
developed/ evaluated | Number | 3 | 7 | 6 | 5 | 4 | 3 | 8 | 100 | 3.00 | 133 | | | nematodes
through
conventional | | Development of bio-
control technologies/
strategies | Technologies developed tested and validated | Number | 2 | 13 | 12 | 11 | 9 | 8 | 9 | 70 | 1.40 | 75 | | | and frontier
research | | Development of IPM
Technologies | Pest dynamics worked
out/technologies
developed and or
validated | Number | 1.5 | 6 | 5 | 4 | 3 | 2 | 4 | 80 | 1.20 | 80 | | | | | Development of diagnostics | Technologies developed /
tested/ validated | Number | 1 | 16 | 14 | 12 | 11 | 9 | 25 | 100 | 1.00 | 178 | M | | | | Collection, evaluation, and characterization of/new pest population | New pest population collected/ characterized | Number | 1 | 3444 | 3100 | 2750 | 2400 | 2060 | 7242 | 100 | 1.00 | 232 | N | | | | Gene sequencing of pathogen and pests | Gene sequenced and deposited in data bank | Number | 0.5 | 44 | 40 | 35 | 31 | 27 | 525 | 100 | 0.50 | 1312 | 0 | | Socio-
economic & | 15 | Policy research in agriculture | Policy documents prepared | Number | 0.5 | 3 | 2 | 1 | 0 | 0 | 2 | 90 | 0.45 | 100 | | | policy
research, | | Impact assessment | Commodities covered | Number | 0.5 | 4 | 3 | 2 | 1 | 0 | 3 | 90 | 0.45 | 100 | | | capacity
building and | | S strategies and models in extension | Strategies/models
developed | Number | 1 | 5 | 4 | 3 | 2 | 1 | 4 | 90 | 0.90 | 100 | | | commercializ
ation of
technologies | | Transfer of knowledge | Capacity building of
farmers, extension
professionals and other
stakeholders | Number | 2 | 24200 | 21804 | 19400 | 17000 | 14500 | 22100 | 91.2 | 1.82 | 101 | | | | | Advisory service (including. farmers contacted in melas). | Farmers contacted/advised | Number | 2 | 183000 | 165000 | 146000 | 128000 | 110000 | 144300 | 79.1 | 1.58 | 87 | | | | | Empowerment of rural women | Farm women skill developed | Number | 2 | 1830 | 1650 | 1470 | 1280 | 1100 | 1708 | 93.2 | 1.86 | 103 | | | | | Organization of demonstration | Demonstration organized | Numbers | 2 | 3300 | 3000 | 2600 | 2300 | 2000 | 5000 | 100 | 2.00 | 166 | P | | | | | Products/Processes
developed and
commercialized | Number | 2 | 11 | 10 | 9 | 8 | 7 | 15 | 100 | 2.00 | 150 | Q | | | | Products/Processes
development and | Patents filed/copyrights registered | Number | 1.5 | 5 | 4 | 3 | 2 | 1 | 14 | 100 | 1.50 | 350 | R | | | | commercialization | Business incubation | Number | 0.5 | 5 | 4 | 3 | 2 | 1 | 1 | 60 | 0.30 | 25 | S | | | | | Revenue generated | Rs.(lakh) | 1 | 144 | 130 | 115 | 100 | 86 | 303 | 100 | 1.00 | 233 | T | | Technological
interventions
for enhancing | 6 | Development of design/implements/technology/machinery | Designs developed and tested/validated | Number | 1.5 | 3 | 2 | 1 | 0 | 0 | 2 | 90 | 1.35 | 100 | | | profitability
through
improved | | Development of post harvest technologies | Technologies
developed/ tested and or
validated | Number | 3 | 5 | 4 | 3 | 2 | 1 | 4 | 90 | 2.70 | 100 | | | farm machinery, post- harvest management and value addition | | Development of
nutraceuticals and value
added food products | Protocols
standardized/process
developed | Number | 1.5 | 3 | 2 | 1 | 0 | 0 | 2 | 90 | 1.35 | 100 | | |---|-----------------------------------|--|--|--------|-----|----------|----------|-----------------------------|----------|----------|------------|------|------|-----|-------| | Development | 20 | | No. of students admitted | Number | 3 | 128 | 115 | 102 | 89 | 77 | 113 | 88.5 | 2.66 | 98 | | | of globally
competitive | | M.Sc. Programme | No of students awarded degrees | Number | 3 | 111 | 100 | 89 | 78 | 67 | 108 | 97.3 | 2.92 | 108 | | | human
resources | | | No. of students admitted | Number | 3 | 142 | 128 | 114 | 100 | 85 | 128 | 90 | 2.70 | 100 | | | resources | | Ph.D Programme | No of students awarded degrees | Number | 3 | 83 | 75 | 67 58 50 100 100 3.0 | 3.00 | 133 | | | | | | | | | AHRD trainings & | No of trainings conducted | Number | 2 | 20 | 18 | 16 | 14 | 12 | 22 | 100 | 2.00 | 122 | | | | | | No of participants trained | Number | 3 | 361 | 325 | 289 | 253 | 217 | 414 | 100 | 3.00 | 127 | | | | | offshore support | Faculty provided advance trainings | Number | 1.5 | 44 | 40 | 36 | 31 | 27 | 9 | 00 | 00 | 23 | U V W | | | | | International/National Seminar/workshop etc. participation | Number | 1.5 | 27 | 24 | 21 | 19 | 16 | 16 | 60 | 0.90 | 66 | V | | Efficient
Functioning | 3 | Timely submission of RFD for 2012-13 | On-time submission | Date | 2 | 23/03/12 | 26/03/12 | 27/03/12 | 28/03/12 | 29/03/12 | 31/03/2012 | 00 | 00 | | W | | of the RFD
System | | Timely submission of
Results for 2012-13 | On-time submission | Date | 1 | 01/05/13 | 02/05/13 | 03/05/13 | 06/05/13 | 07/05/13 | 01/05/2013 | 00 | 00 | | V | | Administrati | 5 | Implement mitigating
strategies for reducing
potential risk of
corruption | % of Implementation | % | 2 | 100 | 95 | 90 | 85 | 80 | 100 | 100 | 2.00 | | | | ve reforms | | Implementation of ISO | Prepare ISO 9001 action plan | Date | 1 | 04/06/12 | 05/06/12 | 06/06/12 | 07/06/12 | 08/06/12 | 19/07/2011 | 100 | 1.00 | | | | | 9001 | 9001 | Percent implementation | % | 2 | 100 | 95 | 90 | 85 | 80 | 100 | 100 | 2.00 | | | | Improving
Internal
Efficiency
/responsivene | | Implementation of | Independent Audit of
Implementation of
citizen's charter | % | 2 | 100 | 95 | 90 | 85 | 80 | 100 | 100 | 2.00 | | | | ss service delivery of Ministry /Department | 4 Implementation of L
Sevottam | Independent Audit of
Implementation of
public grievances
redressal system | % | 2 | 100 | 95 | 90 | 85 | 80 | 100 | 100 | 2.00 | | | | **Total Composite Score: 89.64** **Rating: Very Good** ## Reasons for shortfalls or excessive achievements: - A. A new initiative was started by NBPGR for characterization of large number of germplasm accessions of targeted crops for evaluation, characterization and utilization from the National Gene Bank on multilocation replicated trials, in which IARI also participated and provided technical inputs and data required. Hence there was an unusually large number of germplasm which were evaluated. - B. Often more than expected variants come up during material development processes in plant breeding and all the variants are dutifully registered and submitted for enabling their use by national plant breeding community. The achieved percentage appears as excessive which is only because of expected novel genetic stocks were few and during the year under report the number was only three higher than proposed four. - C. During the period a project was in operation under NAIP Comp-IV, which resulted in collection of large number of samples and characterization of microbes. - D. A large number of maize lines mostly carrying quality protein genes were received from Dr. S K. Vasal (Ex-CIMMYT), an alumnus of IARI, who was admitted to IARI faculty as Adjunct Professor which was not anticipated. - E. This is an excellent achievement under competition in the NARS. Because of the successful breeding programmes, in different crops, a number of varieties were identified based on their performance evaluation against comparators from other institutions during the year for release by the Central Committee, DAC. Normally a proportion of less than 50% of the proposed number get identified in view of the competition in AICRIPs. This year the success rate was higher than that due to the competitiveness of the proposed varieties. - F. There was sufficient quantity of nucleus seed available from previous year stock to meet breeder seed demand - G. Due to increasing demand of IARI vegetable seed, production of nucleus seed was escalated several times. - H. Due to increasing demand of IARI vegetable seed, production of breeder seed was escalated. - I. Due to increasing demand of IARI vegetable seed, production of quality seed was escalated. - J. The more than targeted achievements in tagging/validation and incorporation of new genes/alleles were enabled due to accelerated crop improment programmes launched under NAIP projects and DBT task force for accelerated crop Improvement programme. - K. In projects funded by NAIP and NFBSFARA, several new technologies were tested - L. Same as above (K) - M. Unexpected achievements were made due to support from NAIP and Outreach projects - N. A large number of insects were collected under NAIP project - O. Due to a large number of externally funded projects mentioned above, unexpected number of genes could be sequenced and deposited. - P. Under the Outreach programme we could organize a large number of demonstrations through volunteer partners. - Q. The Institute has strengthened ITMU and ZTM&BPDU, which supported IP management very efficiently - R. Same as above (Q) - S. The previous business manager resigned and new business manager appointed in January 2013, hence activities could not be undertaken as planned. - T. Revenue generation through commercialization/other sales and services. - U. Off-shore training can be provided subject to the provisions and availability of funds provided. - **V.** Same as above (V) - W. Due to communication gap, the report could not be sent on time.